Advertisements
Advertisements
Question
A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. Find the particle’s acceleration each time the velocity is zero
Solution
s(t) = 2t3 – 9t2 + 12t – 4
Velocity v = `"ds"/"dt"`
= 6t2 – 18t + 12
v = 0
⇒ 6(t2 – 3t + 2) = 0
⇒ t = 1, 2
Acceleration = `("d"^2"s")/("dt"^2)`
= 12t – 18
At t = 1, Acceleration = 12(1) – 18 = – 6 m/sec2
At t = 2, Acceleration = 12 (2) – 18 = 6 m/sec2
APPEARS IN
RELATED QUESTIONS
A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. How long does the camera fall before it hits the ground?
A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. At what times the particle changes direction?
A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. Find the total distance travelled by the particle in the first 4 seconds
If the volume of a cube of side length x is v = x3. Find the rate of change of the volume with respect to x when x = 5 units
A stone is dropped into a pond causing ripples in the form of concentric circles. The radius r of the outer ripple is increasing at a constant rate at 2 cm per second. When the radius is 5 cm find the rate of changing of the total area of the disturbed water?
A beacon makes one revolution every 10 seconds. It is located on a ship which is anchored 5 km from a straight shoreline. How fast is the beam moving along the shoreline when it makes an angle of 45° with the shore?
A conical water tank with vertex down of 12 metres height has a radius of 5 metres at the top. If water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water increases when the water is 8 metres deep?
A police jeep, approaching an orthogonal intersection from the northern direction, is chasing a speeding car that has turned and moving straight east. When the jeep is 0.6 km north of the intersection and the car is 0.8 km to the east. The police determine with a radar that the distance between them and the car is increasing at 20 km/hr. If the jeep is moving at 60 km/hr at the instant of measurement, what is the speed of the car?
Find the slope of the tangent to the following curves at the respective given points.
y = x4 + 2x2 – x at x = 1
Find the points on the curve y2 – 4xy = x2 + 5 for which the tangent is horizontal
Find the tangent and normal to the following curves at the given points on the curve
y = x4 + 2ex at (0, 2)
Find the tangent and normal to the following curves at the given points on the curve
y = x sin x at `(pi/2, pi/2)`
Find the equations of the tangents to the curve y = `- (x + 1)/(x - 1)` which are parallel to the line x + 2y = 6
Choose the correct alternative:
The volume of a sphere is increasing in volume at the rate of 3π cm3/ sec. The rate of change of its radius when radius is `1/2` cm
Choose the correct alternative:
The position of a particle moving along a horizontal line of any time t is given by s(t) = 3t2 – 2t – 8. The time at which the particle is at rest is
Choose the correct alternative:
Find the point on the curve 6y = x3 + 2 at which y-coordinate changes 8 times as fast as x-coordinate is
Choose the correct alternative:
The tangent to the curve y2 – xy + 9 = 0 is vertical when
Choose the correct alternative:
Angle between y2 = x and x2 = y at the origin is