English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. At what times the particle changes direction? - Mathematics

Advertisements
Advertisements

Question

A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. At what times the particle changes direction?

Sum

Solution

s = f(t) = 2t3 – 9t2 + 12t – 4

V = f'(t) = 6t2 – 18t + 12

V = 0 ⇒ 6(t2 – 3t – 2) = 0

(t – 1)(t – 2) = 0

t = 1, 2

When t < 1, (say t = 0.5)

V = 6(0.25 – 1.5 + 2) = +ve

When 1 < t < 2, (say t = 1.5)

V = 6(2.25 – 4.5 + 2) = – ve

When t > 2, (say t = 3)

V = 6(9 – 6 + 2) = +ve

So the particle changes its direction when t lies between 1 and 2 secs.

shaalaa.com
Meaning of Derivatives
  Is there an error in this question or solution?
Chapter 7: Applications of Differential Calculus - Exercise 7.1 [Page 8]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 7 Applications of Differential Calculus
Exercise 7.1 | Q 3. (i) | Page 8

RELATED QUESTIONS

A particle moves along a straight line in such a way that after t seconds its distance from the origin is s = 2t2 + 3t metres. Find the instantaneous velocities at t = 3 and t = 6 seconds


A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. What is the instantaneous velocity of the camera when it hits the ground?


A conical water tank with vertex down of 12 metres height has a radius of 5 metres at the top. If water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water increases when the water is 8 metres deep?


A ladder 17 metre long is leaning against the wall. The base of the ladder is pulled away from the wall at a rate of 5 m/s. When the base of the ladder is 8 metres from the wall. How fast is the top of the ladder moving down the wall?


A ladder 17 metre long is leaning against the wall. The base of the ladder is pulled away from the wall at a rate of 5 m/s. When the base of the ladder is 8 metres from the wall, at what rate, the area of the triangle formed by the ladder, wall, and the floor, is changing?


Find the slope of the tangent to the following curves at the respective given points.

y = x4 + 2x2 – x at x = 1


Find the slope of the tangent to the following curves at the respective given points.

x = a cos3t, y = b sin3t at t = `pi/2`


Find the tangent and normal to the following curves at the given points on the curve

y = x2 – x4 at (1, 0)


Find the tangent and normal to the following curves at the given points on the curve

y = x sin x at `(pi/2, pi/2)`


Find the equations of the tangents to the curve y = 1 + x3 for which the tangent is orthogonal with the line x + 12y = 12


Find the equation of tangent and normal to the curve given by x – 7 cos t andy = 2 sin t, t ∈ R at any point on the curve


Choose the correct alternative:

The volume of a sphere is increasing in volume at the rate of 3π cm3/ sec. The rate of change of its radius when radius is `1/2` cm


Choose the correct alternative:

The position of a particle moving along a horizontal line of any time t is given by s(t) = 3t2 – 2t – 8. The time at which the particle is at rest is


Choose the correct alternative:

Find the point on the curve 6y = x3 + 2 at which y-coordinate changes 8 times as fast as x-coordinate is


Choose the correct alternative:

The abscissa of the point on the curve f(x) = `sqrt(8 - 2x)` at which the slope of the tangent is – 0.25?


Choose the correct alternative:

The maximum slope of the tangent to the curve y = ex sin x, x ∈ [0, 2π] is at


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×