English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Find the slope of the tangent to the following curves at the respective given points. y = x4 + 2x2 – x at x = 1 - Mathematics

Advertisements
Advertisements

Question

Find the slope of the tangent to the following curves at the respective given points.

y = x4 + 2x2 – x at x = 1

Sum

Solution

y = x4 + 2x2 – x

Differentiating w.r.t. ‘x’

`"d"y)/("d"x = 4x3 + 4x – 1

Slope of the tangent `(("d"y)/("d"x))_((x = 1))`

= 4(1)³ + 4(1) – 1

= 4 + 4 – 1

= 7

shaalaa.com
Meaning of Derivatives
  Is there an error in this question or solution?
Chapter 7: Applications of Differential Calculus - Exercise 7.2 [Page 14]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 7 Applications of Differential Calculus
Exercise 7.2 | Q 1. (i) | Page 14

RELATED QUESTIONS

A particle moves along a straight line in such a way that after t seconds its distance from the origin is s = 2t2 + 3t metres. Find the average velocity between t = 3 and t = 6 seconds


A particle moves along a straight line in such a way that after t seconds its distance from the origin is s = 2t2 + 3t metres. Find the instantaneous velocities at t = 3 and t = 6 seconds


A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. Find the total distance travelled by the particle in the first 4 seconds


A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. Find the particle’s acceleration each time the velocity is zero


If the volume of a cube of side length x is v = x3. Find the rate of change of the volume with respect to x when x = 5 units


If the mass m(x) (in kilograms) of a thin rod of length x (in metres) is given by, m(x) = `sqrt(3x)` then what is the rate of change of mass with respect to the length when it is x = 3 and x = 27 metres


A conical water tank with vertex down of 12 metres height has a radius of 5 metres at the top. If water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water increases when the water is 8 metres deep?


A police jeep, approaching an orthogonal intersection from the northern direction, is chasing a speeding car that has turned and moving straight east. When the jeep is 0.6 km north of the intersection and the car is 0.8 km to the east. The police determine with a radar that the distance between them and the car is increasing at 20 km/hr. If the jeep is moving at 60 km/hr at the instant of measurement, what is the speed of the car?


Find the tangent and normal to the following curves at the given points on the curve

y = x4 + 2ex at (0, 2)


Find the tangent and normal to the following curves at the given points on the curve

y = x sin x at `(pi/2, pi/2)`


Find the equations of the tangents to the curve y = 1 + x3 for which the tangent is orthogonal with the line x + 12y = 12


Find the equations of the tangents to the curve y = `- (x + 1)/(x - 1)` which are parallel to the line x + 2y = 6


Find the angle between the rectangular hyperbola xy = 2 and the parabola x2 + 4y = 0


Choose the correct alternative:

A stone is thrown, up vertically. The height reaches at time t seconds is given by x = 80t – 16t2. The stone reaches the maximum! height in time t seconds is given by


Choose the correct alternative:

The tangent to the curve y2 – xy + 9 = 0 is vertical when


Choose the correct alternative:

Angle between y2 = x and x2 = y at the origin is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×