English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Find the point on the curve y = x2 – 5x + 4 at which the tangent is parallel to the line 3x + y = 7 - Mathematics

Advertisements
Advertisements

Question

Find the point on the curve y = x2 – 5x + 4 at which the tangent is parallel to the line 3x + y = 7

Sum

Solution

y = x2 – 5x + 4

Differentiating w.r.t. ‘x’

Slope of the tangent `("d")/("d"x)` = 2x – 5

Given line 3x + y = 7

Slope of the line = `- 3/1` = – 3

Since the tangent is parallel to the line, their slopes are equal.

∴ ("d"y)/("d"x)` =  – 3

⇒ 2x – 5 = – 3

2x = 2

x = 1

When x = 1, y = (1)2 – 5(1) + 4 = 0

∴ Point on the curve is (1, 0).

shaalaa.com
Meaning of Derivatives
  Is there an error in this question or solution?
Chapter 7: Applications of Differential Calculus - Exercise 7.2 [Page 14]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 7 Applications of Differential Calculus
Exercise 7.2 | Q 2 | Page 14

RELATED QUESTIONS

A particle moves along a straight line in such a way that after t seconds its distance from the origin is s = 2t2 + 3t metres. Find the average velocity between t = 3 and t = 6 seconds


A particle moves along a straight line in such a way that after t seconds its distance from the origin is s = 2t2 + 3t metres. Find the instantaneous velocities at t = 3 and t = 6 seconds


A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. How long does the camera fall before it hits the ground?


A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. What is the instantaneous velocity of the camera when it hits the ground?


A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. Find the total distance travelled by the particle in the first 4 seconds


A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. Find the particle’s acceleration each time the velocity is zero


If the volume of a cube of side length x is v = x3. Find the rate of change of the volume with respect to x when x = 5 units


If the mass m(x) (in kilograms) of a thin rod of length x (in metres) is given by, m(x) = `sqrt(3x)` then what is the rate of change of mass with respect to the length when it is x = 3 and x = 27 metres


Find the slope of the tangent to the following curves at the respective given points.

y = x4 + 2x2 – x at x = 1


Find the tangent and normal to the following curves at the given points on the curve

y = x2 – x4 at (1, 0)


Find the tangent and normal to the following curves at the given points on the curve

y = x sin x at `(pi/2, pi/2)`


Find the equations of the tangents to the curve y = `- (x + 1)/(x - 1)` which are parallel to the line x + 2y = 6


Find the equation of tangent and normal to the curve given by x – 7 cos t andy = 2 sin t, t ∈ R at any point on the curve


Choose the correct alternative:

The position of a particle moving along a horizontal line of any time t is given by s(t) = 3t2 – 2t – 8. The time at which the particle is at rest is


Choose the correct alternative:

The abscissa of the point on the curve f(x) = `sqrt(8 - 2x)` at which the slope of the tangent is – 0.25?


Choose the correct alternative:

The tangent to the curve y2 – xy + 9 = 0 is vertical when


Choose the correct alternative:

Angle between y2 = x and x2 = y at the origin is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×