Advertisements
Advertisements
प्रश्न
A particle moves along a straight line in such a way that after t seconds its distance from the origin is s = 2t2 + 3t metres. Find the average velocity between t = 3 and t = 6 seconds
उत्तर
s = 2t2 + 3t
Average velocity between t = 3 and t = 6 seconds
Now s(t) = 2t² + 3t
Average velocity = `("s"(6) - "s"(3))/(6 - 3)`
= `([2(6^2) + 3(6)] - [2(3^2) + 3(3)])/3`
= `((72 + 18) - (18 + 9))/3`
= `(90 - 27)/3`
= `63/3`
= 21 m/s
APPEARS IN
संबंधित प्रश्न
A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. How long does the camera fall before it hits the ground?
A camera is accidentally knocked off an edge of a cliff 400 ft high. The camera falls a distance of s = 16t2 in t seconds. What is the instantaneous velocity of the camera when it hits the ground?
A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. Find the particle’s acceleration each time the velocity is zero
If the volume of a cube of side length x is v = x3. Find the rate of change of the volume with respect to x when x = 5 units
A beacon makes one revolution every 10 seconds. It is located on a ship which is anchored 5 km from a straight shoreline. How fast is the beam moving along the shoreline when it makes an angle of 45° with the shore?
A conical water tank with vertex down of 12 metres height has a radius of 5 metres at the top. If water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water increases when the water is 8 metres deep?
A police jeep, approaching an orthogonal intersection from the northern direction, is chasing a speeding car that has turned and moving straight east. When the jeep is 0.6 km north of the intersection and the car is 0.8 km to the east. The police determine with a radar that the distance between them and the car is increasing at 20 km/hr. If the jeep is moving at 60 km/hr at the instant of measurement, what is the speed of the car?
Find the point on the curve y = x2 – 5x + 4 at which the tangent is parallel to the line 3x + y = 7
Find the points on the curve y2 – 4xy = x2 + 5 for which the tangent is horizontal
Find the tangent and normal to the following curves at the given points on the curve
y = x4 + 2ex at (0, 2)
Find the tangent and normal to the following curves at the given points on the curve
x = cos t, y = 2 sin2t at t = `pi/2`
Find the equations of the tangents to the curve y = 1 + x3 for which the tangent is orthogonal with the line x + 12y = 12
Find the equations of the tangents to the curve y = `- (x + 1)/(x - 1)` which are parallel to the line x + 2y = 6
Find the angle between the rectangular hyperbola xy = 2 and the parabola x2 + 4y = 0
Show that the two curves x2 – y2 = r2 and xy = c2 where c, r are constants, cut orthogonally
Choose the correct alternative:
The volume of a sphere is increasing in volume at the rate of 3π cm3/ sec. The rate of change of its radius when radius is `1/2` cm
Choose the correct alternative:
The slope of the line normal to the curve f(x) = 2 cos 4x at x = `pi/12` is
Choose the correct alternative:
The maximum slope of the tangent to the curve y = ex sin x, x ∈ [0, 2π] is at