हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Find the tangent and normal to the following curves at the given points on the curve y = x4 + 2ex at (0, 2) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the tangent and normal to the following curves at the given points on the curve

y = x4 + 2ex at (0, 2)

योग

उत्तर

y = x4 + 2ex at (0, 2)

Differentiating w.r.t. ‘x’

`("d"y)/("d"x)` = 4x3 + 2ex

Slope of the tangent ‘m’

`(("d"y)/("d"x))_(((0, 2))` = 4(0)3 + 2e0 = 2

Slope of the Normal `- 1/"m" = - 1/2`

Equation of tangent is

y – y1 = m(x – x1)

⇒ y – 2 = 2(x – 0)

⇒ y – 2 = 2x

⇒ 2x – y + 2 = 0

Equation of Normal is

y – y1 = `- 1/"m"` (x – x1)

y – 2 = `- 1/2` (x – 0)

2y – 4 = – x

x + 2y – 4 = 0

shaalaa.com
Meaning of Derivatives
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Applications of Differential Calculus - Exercise 7.2 [पृष्ठ १५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 7 Applications of Differential Calculus
Exercise 7.2 | Q 5. (ii) | पृष्ठ १५

संबंधित प्रश्न

A particle moves along a straight line in such a way that after t seconds its distance from the origin is s = 2t2 + 3t metres. Find the instantaneous velocities at t = 3 and t = 6 seconds


A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. At what times the particle changes direction?


A particle moves along a line according to the law s(t) = 2t3 – 9t2 + 12t – 4, where t ≥ 0. Find the total distance travelled by the particle in the first 4 seconds


If the volume of a cube of side length x is v = x3. Find the rate of change of the volume with respect to x when x = 5 units


A conical water tank with vertex down of 12 metres height has a radius of 5 metres at the top. If water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water increases when the water is 8 metres deep?


A ladder 17 metre long is leaning against the wall. The base of the ladder is pulled away from the wall at a rate of 5 m/s. When the base of the ladder is 8 metres from the wall. How fast is the top of the ladder moving down the wall?


A ladder 17 metre long is leaning against the wall. The base of the ladder is pulled away from the wall at a rate of 5 m/s. When the base of the ladder is 8 metres from the wall, at what rate, the area of the triangle formed by the ladder, wall, and the floor, is changing?


Find the slope of the tangent to the following curves at the respective given points.

x = a cos3t, y = b sin3t at t = `pi/2`


Find the point on the curve y = x2 – 5x + 4 at which the tangent is parallel to the line 3x + y = 7


Find the tangent and normal to the following curves at the given points on the curve

y = x2 – x4 at (1, 0)


Find the tangent and normal to the following curves at the given points on the curve

x = cos t, y = 2 sin2t at t = `pi/2`


Find the equations of the tangents to the curve y = 1 + x3 for which the tangent is orthogonal with the line x + 12y = 12


Find the angle between the rectangular hyperbola xy = 2 and the parabola x2 + 4y = 0


Choose the correct alternative:

The position of a particle moving along a horizontal line of any time t is given by s(t) = 3t2 – 2t – 8. The time at which the particle is at rest is


Choose the correct alternative:

A stone is thrown, up vertically. The height reaches at time t seconds is given by x = 80t – 16t2. The stone reaches the maximum! height in time t seconds is given by


Choose the correct alternative:

The abscissa of the point on the curve f(x) = `sqrt(8 - 2x)` at which the slope of the tangent is – 0.25?


Choose the correct alternative:

The slope of the line normal to the curve f(x) = 2 cos 4x at x = `pi/12` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×