Advertisements
Advertisements
प्रश्न
Find the value of k, if area of ΔPQR is 4 square units and vertices are P(k, 0), Q(4, 0), R(0, 2).
उत्तर
Here, P(x1, y1) ≡ P(k, 0), Q(x2, y2) ≡ Q(4, 0), R(x3, y3) ≡ R(0, 2)
A(ΔPQR) = 4 sq. units
Area of a triangle = `1/2|(x_1, y_1, 1),(x_2, y_2, 1),(x_3, y3, 1)|`
∴ ± 4 = `1/2|("k", 0, 1),(4, 0, 1),(0, 2, 1)|`
∴ ± 4 = `1/2["k"(0 - 2) - 0 + 1 (8 - 0)]`
∴ ± 8 = –2k + 8
∴ 8 = –2k + 8 or –8 = –2k + 8
∴ –2k = 0 or 2k = 16
∴ k = 0 or k = 8
APPEARS IN
संबंधित प्रश्न
Find the area of the triangle whose vertices are: (0, 5), (0, – 5), (5, 0)
Find the value of k, if the area of the triangle with vertices at A(k, 3), B(–5, 7), C(–1, 4) is 4 square units.
Find the area of triangles whose vertices are A(−1, 2), B(2, 4), C(0, 0).
Find the values of 'K' if area of triangle is 4 square units and vertices are (k, 0), (4, 0), (0, 2).
If the area of triangle is 35 square units with vertices (2, – 6), (5, 4) and (k, 4) then k is
If Δ = `|(1, 2, 3),(2, -1, 0),(3, 4, 5)|`, then `|(1, 6, 3),(4, -6, 0),(3, 12, 5)|` is
Find the area of triangle whose vertices are A ( -1,2) ,B (2,4) ,C (0,0)
Find the area of triangle whose vertices are A( -1, 2), B(2, 4), C(0, 0)
Find the area of triangle whose vertices are A(-1,2), B(2,4), C(0,0)
Find the area of triangle whose vertices are A( -1, 2), B(2, 4), C(0, 0).
Find the area of triangle whose vertices are A(−1, 2), B(2, 4), C(0, 0).
Find the area of triangle whose vertices are A(-1, 2), B(2, 4), C(0, 0).
Find the area of triangle whose vertices are A(−1, 2), B(2, 4), C(0, 0)
Find the area of triangle whose vertices are A (-1, 2), B (2, 4), C (0, 0).
Find the area of triangles whose vertices are A(−1, 2), B(2, 4), C(0, 0).