Advertisements
Advertisements
प्रश्न
Find the values of x and y if the mean and total frequency of the distribution are 25 and 50 respectively.
Class Interval | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 |
Frequency | 7 | x | 5 | y | 4 | 2 |
उत्तर
Given: Mean = 25
Class Interval |
Frequency `(f_i)` |
Class mark `(x_i)` |
`d_i = x_i - 25` | `f_i d_i` |
0 – 10 | 7 | 5 | – 20 | – 140 |
10 – 20 | x | 15 | – 10 | – 10x |
20 – 30 | 5 | 25 = A | 0 | 0 |
30 – 40 | y | 35 | 10 | 10y |
40 – 50 | 4 | 45 | 20 | 80 |
50 – 60 | 2 | 55 | 30 | 60 |
`sumf_i = 18 + x + y` | `sumf_i d_i = 10y - 10x` |
Mean = 25 .......[Given]
Also, Mean, `bar"X" = "A" + (sumf_i d_i)/(sumf_i)`
25 = `25 + (10y - 10x)/(18 + x + y)`
25 – 25 = `(10y - 10x)/(18 + x + y)`
0 = `(10y - 10x)/(18 + x + y)`
0 (18 + x + y) = 10y – 10x
10y – 10x = 0
y – x = 0 ......(i)
Also, 50 = 18 + x + y
x + y = 50 – 18
x + y = 32 ......(ii)
Adding equations (i) and (ii), we get
2y = 32
y = 16
Putting the value of y in equation (ii), we get
x + 16 = 32
x = 32 – 16 = 16
As a result, x and y have values of 16 and 16, respectively.
APPEARS IN
संबंधित प्रश्न
In a retail market, fruit vendors were selling mangoes kept in packing boxes. These boxes contained varying number of mangoes. The following was the distribution of mangoes according to the number of boxes.
Number of mangoe | 50 − 52 | 53 − 55 | 56 − 58 | 59 − 61 | 62 − 64 |
Number of boxes | 15 | 110 | 135 | 115 | 25 |
Find the mean number of mangoes kept in a packing box. Which method of finding the mean did you choose?
Find the mean of the following data:-
x | 19 | 21 | 23 | 25 | 27 | 29 | 31 |
f | 13 | 15 | 16 | 18 | 16 | 15 | 13 |
The following table gives the number of boys of a particular age in a class of 40 students. Calculate the mean age of the students
Age (in years) | 15 | 16 | 17 | 18 | 19 | 20 |
No. of students | 3 | 8 | 10 | 10 | 5 | 4 |
The weekly observations on cost of living index in a certain city for the year 2004 - 2005 are given below. Compute the weekly cost of living index.
Cost of living Index | Number of Students |
1400 - 1500 | 5 |
1500 - 1600 | 10 |
1600 - 1700 | 20 |
1700 - 1800 | 9 |
1800 - 1900 | 6 |
1900 - 2000 | 2 |
The following table shows the marks scored by 140 students in an examination of a certain paper:
Marks: | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
Number of students: | 20 | 24 | 40 | 36 | 20 |
Calculate the average marks by using all the three methods: direct method, assumed mean deviation and shortcut method.
Find the mean of the following data, using assumed-mean method:
Class | 0 – 20 | 20 – 40 | 40 – 60 | 60 – 80 | 80 – 100 | 100 - 120 |
Frequency | 20 | 35 | 52 | 44 | 38 | 31 |
The yield of soyabean per acre in the farm of Mukund for 7 years was 10,7,5,3,9,6,9 quintal. Find the mean of yield per acre.
Define mean.
Which of the following cannot be determined graphically?
The mean of n observation is `overlineX` . If the first item is increased by 1, second by 2 and so on, then the new mean is
A school has 4 sections of Chemistry in class X having 40, 35, 45 and 42 students. The mean marks obtained in Chemistry test are 50, 60, 55 and 45 respectively for the 4 sections. Determine the overall average of marks per student.
Find the mean of the following frequency distribution:
Class Interval | Frequency |
0 - 50 | 4 |
50 - 100 | 8 |
100 - 150 | 16 |
150 - 200 | 13 |
200 - 250 | 6 |
250 - 300 | 3 |
The median from the table is?
Value | Frequency |
7 | 2 |
8 | 1 |
9 | 4 |
10 | 5 |
11 | 6 |
12 | 1 |
13 | 3 |
xi | fi | fixi |
4 | 10 | A ______ |
8 | 11 | B ______ |
12 | 9 | C ______ |
16 | 13 | D ______ |
`sumf_ix_i =` ______ |
Find the value of `sumf_ix_i`
The following table gives the number of pages written by Sarika for completing her own book for 30 days:
Number of pages written per day |
16 – 18 | 19 – 21 | 22 – 24 | 25 – 27 | 28 – 30 |
Number of days | 1 | 3 | 4 | 9 | 13 |
Find the mean number of pages written per day.
An analysis of particular information is given in the following table.
Age Group | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 |
Frequency | 2 | 5 | 6 | 5 | 2 |
For this data, mode = median = 25. Calculate the mean. Observing the given frequency distribution and values of the central tendency interpret your observation.
The following table gives the distribution of the life time of 400 neon lamps:
Life time (in hours) | Number of lamps |
1500 – 2000 | 14 |
2000 – 2500 | 56 |
2500 – 3000 | 60 |
3000 – 3500 | 86 |
3500 – 4000 | 74 |
4000 – 4500 | 62 |
4500 – 5000 | 48 |
Find the average life time of a lamp.
The following table gives the duration of movies in minutes:
Duration | 100 – 110 | 110 – 120 | 120 – 130 | 130 – 140 | 140 – 150 | 150 – 160 |
No. of movies | 5 | 10 | 17 | 8 | 6 | 4 |
Using step-deviation method, find the mean duration of the movies.