Advertisements
Advertisements
Question
Find the values of x and y if the mean and total frequency of the distribution are 25 and 50 respectively.
Class Interval | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 |
Frequency | 7 | x | 5 | y | 4 | 2 |
Solution
Given: Mean = 25
Class Interval |
Frequency `(f_i)` |
Class mark `(x_i)` |
`d_i = x_i - 25` | `f_i d_i` |
0 – 10 | 7 | 5 | – 20 | – 140 |
10 – 20 | x | 15 | – 10 | – 10x |
20 – 30 | 5 | 25 = A | 0 | 0 |
30 – 40 | y | 35 | 10 | 10y |
40 – 50 | 4 | 45 | 20 | 80 |
50 – 60 | 2 | 55 | 30 | 60 |
`sumf_i = 18 + x + y` | `sumf_i d_i = 10y - 10x` |
Mean = 25 .......[Given]
Also, Mean, `bar"X" = "A" + (sumf_i d_i)/(sumf_i)`
25 = `25 + (10y - 10x)/(18 + x + y)`
25 – 25 = `(10y - 10x)/(18 + x + y)`
0 = `(10y - 10x)/(18 + x + y)`
0 (18 + x + y) = 10y – 10x
10y – 10x = 0
y – x = 0 ......(i)
Also, 50 = 18 + x + y
x + y = 50 – 18
x + y = 32 ......(ii)
Adding equations (i) and (ii), we get
2y = 32
y = 16
Putting the value of y in equation (ii), we get
x + 16 = 32
x = 32 – 16 = 16
As a result, x and y have values of 16 and 16, respectively.
APPEARS IN
RELATED QUESTIONS
The following table gives the frequency distribution of trees planted by different Housing Societies in a particular locality:
No. of Trees | No. of Housing Societies |
10-15 | 2 |
15-20 | 7 |
20-25 | 9 |
25-30 | 8 |
30-35 | 6 |
35-40 | 4 |
Find the mean number of trees planted by Housing Societies by using ‘Assumed Means Method’
To find out the concentration of SO2 in the air (in parts per million, i.e., ppm), the data was collected for 30 localities in a certain city and is presented below:
concentration of SO2 (in ppm) | Frequency |
0.00 − 0.04 | 4 |
0.04 − 0.08 | 9 |
0.08 − 0.12 | 9 |
0.12 − 0.16 | 2 |
0.16 − 0.20 | 4 |
0.20 − 0.24 | 2 |
Find the mean concentration of SO2 in the air.
Find the missing frequency (p) for the following distribution whose mean is 7.68.
x | 3 | 5 | 7 | 9 | 11 | 13 |
f | 6 | 8 | 15 | P | 8 | 4 |
Find the missing frequencies in the following frequency distribution if it is known that the mean of the distribution is 50.
x | 10 | 30 | 50 | 70 | 90 | |
f | 17 | f1 | 32 | f2 | 19 | Total 120 |
If the mean of the following data is 18.75. Find the value of p.
x | 10 | 15 | P | 25 | 30 |
f | 5 | 10 | 7 | 8 | 2 |
Find the mean from the following frequency distribution of marks at a test in statistics:
Marks(x) | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
No. of students (f) | 15 | 50 | 80 | 76 | 72 | 45 | 39 | 9 | 8 | 6 |
The following table gives the distribution of total household expenditure (in rupees) of manual workers in a city. Find the average expenditure (in rupees) per household.
Expenditure (in rupees) (x1) |
Frequency(f1) |
100 - 150 | 24 |
150 - 200 | 40 |
200 - 250 | 33 |
250 - 300 | 28 |
300 - 350 | 30 |
350 - 400 | 22 |
400 - 450 | 16 |
450 - 500 | 7 |
For the following distribution, calculate mean using all suitable methods:
Size of item | 1 - 4 | 4 - 9 | 9 - 16 | 16 - 27 |
Frequency | 6 | 12 | 26 | 20 |
Find the mean using direct method:
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
Frequency | 7 | 5 | 6 | 12 | 8 | 2 |
The following distribution shows the daily pocket allowance of children of a locality. If the mean pocket allowance is ₹ 18 , find the missing frequency f.
Daily pocket allowance (in Rs.) |
11-13 | 13-15 | 15-17 | 17-19 | 19-21 | 21-23 | 23-25 |
Number of children | 7 | 6 | 9 | 13 | f | 5 | 4 |
During a medical check-up, the number of heartbeats per minute of 30 patients were recorded and summarized as follows:
Number of heartbeats per minute |
65 – 68 | 68 – 71 | 71 – 74 | 74 – 77 | 77 – 80 | 80 – 83 | 83 - 86 |
Number of patients |
2 | 4 | 3 | 8 | 7 | 4 | 2 |
Find the mean heartbeats per minute for these patients, choosing a suitable method.
The weights of tea in 70 packets are shown in the following table:
Weight | 200 – 201 |
201 – 202 |
202 – 203 |
203 – 204 |
204 – 205 |
205 – 206 |
Number of packets | 13 | 27 | 18 | 10 | 1 | 1 |
Find the mean weight of packets using step deviation method.
The following table shows the income of farmers in a grape season. Find the mean of their income.
Income
(Thousand Rupees)
|
20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | 70 - 80 |
Farmers | 10 | 11 | 15 | 16 | 18 | 14 |
Define mean.
If the arithmetic mean, 7, 8, x, 11, 14 is x, then x =
Find the mean of the following distribution:
x | 4 | 6 | 9 | 10 | 15 |
f | 5 | 10 | 10 | 7 | 8 |
Find the mean wage of a worker from the following data:
Wages (In ₹) | 1400 | 1450 | 1500 | 1550 | 1600 | 1650 | 1700 |
Number of workers | 15 | 20 | 18 | 27 | 15 | 3 | 2 |
A frequency distribution of the life times of 400 T.V., picture tubes leased in tube company is given below. Find the average life of tube:
Life time (in hrs) | Number of tubes |
300 - 399 | 14 |
400 - 499 | 46 |
500 - 599 | 58 |
600 - 699 | 76 |
700 - 799 | 68 |
800 - 899 | 62 |
900 - 999 | 48 |
1000 - 1099 | 22 |
1100 - 1199 | 6 |
The following table gives the marks scored by a set of students in an examination. Calculate the mean of the distribution by using the short cut method.
Marks | Number of Students (f) |
0 – 10 | 3 |
10 – 20 | 8 |
20 – 30 | 14 |
30 – 40 | 9 |
40 – 50 | 4 |
50 – 60 | 2 |