Advertisements
Advertisements
Question
For the following distribution, calculate mean using all suitable methods:
Size of item | 1 - 4 | 4 - 9 | 9 - 16 | 16 - 27 |
Frequency | 6 | 12 | 26 | 20 |
Solution
By direct method
Class interval | Mid value(x1) | Frequency(f1) | f1x1 |
1 - 4 | 2.5 | 6 | 15 |
4 - 9 | 6.5 | 12 | 78 |
9 - 16 | 12.5 | 26 | 325 |
16 - 27 | 21.5 | 20 | 430 |
N = 64 | `sumf_1"u"_1=848` |
Mean `=(sumf_1"u"_1)/N`
`=848/64=13.25`
By assuming mean method
Let the assumed mean A = 6.5
Class interval | Mid value(x1) |
u1 = x1 - A = x1 - 6.5 |
Frequency(f1) | f1u1 |
1 - 4 | 2.5 | -4 | 6 | -24 |
4 - 9 | 6.5 | 0 | 12 | 0 |
9 - 16 | 12.5 | 6 | 26 | 156 |
16 - 27 | 21.5 | 15 | 20 | 300 |
N = 64 | `sumf_1"u"_1=432` |
Mean `=A + (sumf_1"u"_1)/N`
`=6.5+432/64`
= 6.5 + 6.75
= 13.25
APPEARS IN
RELATED QUESTIONS
Consider the following distribution of daily wages of 50 worker of a factory.
Daily wages (in Rs) |
100 − 120 |
120 − 140 |
140 −1 60 |
160 − 180 |
180 − 200 |
Number of workers |
12 |
14 |
8 |
6 |
10 |
Find the mean daily wages of the workers of the factory by using an appropriate method.
The following table gives the number of branches and number of plants in the garden of a school.
No. of branches (x) | 2 | 3 | 4 | 5 | 6 |
No. of plants (f) | 49 | 43 | 57 | 38 | 13 |
Calculate the average number of branches per plant.
The following distribution gives the number of accidents met by 160 workers in a factory during a month.
No. of accidents(x) | 0 | 1 | 2 | 3 | 4 |
No. of workers (f) | 70 | 52 | 34 | 3 | 1 |
Find the average number of accidents per worker.
During a medical check-up, the number of heartbeats per minute of 30 patients were recorded and summarized as follows:
Number of heartbeats per minute |
65 – 68 | 68 – 71 | 71 – 74 | 74 – 77 | 77 – 80 | 80 – 83 | 83 - 86 |
Number of patients |
2 | 4 | 3 | 8 | 7 | 4 | 2 |
Find the mean heartbeats per minute for these patients, choosing a suitable method.
Find the mean of the following frequency distribution, using the assumed-mean method:
Class | 100 – 120 | 120 – 140 | 140 – 160 | 160 – 180 | 180 – 200 |
Frequency | 10 | 20 | 30 | 15 | 5 |
In an annual examination, marks (out of 90) obtained by students of Class X in mathematics are given below:
Marks Obtained |
0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
Number of students |
2 | 4 | 5 | 20 | 9 | 10 |
Find the mean marks.
There are 45 students in a class, in which 15 are girls. The average weight of 15 girls is 45 kg and 30 boys is 52 kg. Find the mean weight in kg of the entire class.
The mean of the following distribution is 6. Find the value at P:
x | 2 | 4 | 6 | 10 | P + 5 |
f | 3 | 2 | 3 | 1 | 2 |
A study of the yield of 150 tomato plants, resulted in the record:
Tomatoes per Plant | 1 - 5 | 6 - 10 | 11 - 15 | 16 - 20 | 21 - 25 |
Number of Plants | 20 | 50 | 46 | 22 | 12 |
Calculate the mean of the number of tomatoes per plant.
There is a grouped data distribution for which mean is to be found by step deviation method.
Class interval | Number of Frequency (fi) | Class mark (xi) | di = xi - a | `u_i=d_i/h` |
0 - 100 | 40 | 50 | -200 | D |
100 - 200 | 39 | 150 | B | E |
200 - 300 | 34 | 250 | 0 | 0 |
300 - 400 | 30 | 350 | 100 | 1 |
400 - 500 | 45 | 450 | C | F |
Total | `A=sumf_i=....` |
Find the value of A, B, C, D, E and F respectively.