Advertisements
Advertisements
Question
Consider the following distribution of daily wages of 50 worker of a factory.
Daily wages (in Rs) |
100 − 120 |
120 − 140 |
140 −1 60 |
160 − 180 |
180 − 200 |
Number of workers |
12 |
14 |
8 |
6 |
10 |
Find the mean daily wages of the workers of the factory by using an appropriate method.
Solution
To find the class mark for each interval, the following relation is used.
x_i = ("Upper class limits + Lower class limits")/2
Class size (h) of this data = 20
Taking 150 as assured mean (a), di, ui, and fiui can be calculated as follows.
Daily wages (in Rs) |
Number of workers (fi) | xi | di = xi − 15 | ui = di/20 | fiui |
100 −120 | 12 | 110 | − 40 | − 2 | − 24 |
120 − 140 | 14 | 130 | − 20 | − 1 | − 14 |
140 − 160 | 8 | 150 | 0 | 0 | 0 |
160 −180 | 6 | 170 | 20 | 1 | 6 |
180 − 200 | 10 | 190 | 40 | 2 | 20 |
Total | 50 | -12 |
From the table, it can be observed that
`sum f_i = 50`
`sumf_iu_i = -12`
Mean, `barx = a+((sumf_i"u"_i)/(sumf_i))h`
= 150+(-12/50)20
= 150 - 24/5
= 150 - 4.8
= 145.2
Therefore, the mean daily wage of the workers of the factory is Rs 145.20
APPEARS IN
RELATED QUESTIONS
The following table gives the number of boys of a particular age in a class of 40 students. Calculate the mean age of the students
Age (in years) | 15 | 16 | 17 | 18 | 19 | 20 |
No. of students | 3 | 8 | 10 | 10 | 5 | 4 |
Find the mean of each of the following frequency distributions: (5 - 14)
Class interval | 0 - 6 | 6 - 12 | 12 - 18 | 18 - 24 | 24 - 30 |
Frequency | 6 | 8 | 10 | 9 | 7 |
If the mean of the following distribution is 27, find the value of p.
Class | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
Frequency | 8 | p | 12 | 13 | 10 |
Find the mean of the following data, using direct method:
Class | 25-35 | 35-45 | 45-55 | 55-65 | 65-75 |
Frequency | 6 | 10 | 8 | 12 | 4 |
Find the mean of the following distribution:
Class interval | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
Frequency | 10 | 6 | 8 | 12 | 5 |
If the mean of n observation ax1, ax2, ax3,....,axn is a`bar"X"`, show that `(ax_1 - abar"X") + (ax_2 - abar"X") + ...(ax_"n" - abar"X")` = 0.
Consider the following distribution of SO2 concentration in the air (in ppm = parts per million) in 30 localities. Find the mean SO2 concentration using assumed mean method. Also find the values of A, B and C.
Class interval | Frequency (fi) | Class mark (xi) | di = xi - a |
0.00 - 0.04 | 4 | 0.02 | -0.08 |
0.04 - 0.08 | 9 | 0.06 | A |
0.08 - 0.12 | 9 | 0.10 | B |
0.12 - 0.16 | 2 | 0.14 | 0.04 |
0.16 - 0.20 | 4 | 0.18 | C |
0.20 - 0.24 | 2 | 0.22 | 0.12 |
Total | `sumf_i=30` |
Calculate the mean of the following data:
Class | 4 – 7 | 8 – 11 | 12 – 15 | 16 – 19 |
Frequency | 5 | 4 | 9 | 10 |
250 apples of a box were weighed and the distribution of masses of the apples is given in the following table:
Mass (in grams) |
80 – 100 | 100 – 120 | 120 – 140 | 140 – 160 | 160 – 180 |
Number of apples |
20 | 60 | 70 | x | 60 |
Find the value of x and the mean mass of the apples.
Using step-deviation method, find mean for the following frequency distribution:
Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
Frequency | 3 | 4 | 7 | 6 | 8 | 2 |