Advertisements
Advertisements
प्रश्न
Find the vector equation of the line which is parallel to the vector `3hat"i" - 2hat"j" + 6hat"k"` and which passes through the point (1, –2, 3).
उत्तर
We know that the equation of line is `vec"r" = vec"a" + vec"b"lambda`
Here, `vec"a" = hat"i" - 2hat"j" + 3hat"k"` and `vec"b" = 3hat"i" - 2hat"j" + 6hat"k"`
∴ Equation of line is `vec"r" = (hat"i" - 2hat"j" + 3hat"k") + lambda(3hat"i" - 2hat"j" + 6hat"k")`
⇒ `(xhat"i" + yhat"j" + zhat"k") = (hat"i" - 2hat"j" + 3hat"k") + lambda(3hat"i" - 2hat"j" + 6hat"k")`
⇒ `(xhat"i" + yhat"j" + zhat"k") - (hat"i" - 2hat"j" + 3hat"k") = lambda(3hat"i" - 2hat"j" + 6hat"k")`
⇒ `(x - 1)hat"i" + (y + 2)hat"j" + (z - 3)hat"k" = lambda(3hat"i" - 2hat"j" + 6hat"k")`
Hence, the required equation is
`(x - 1)hat"i" + (y + 2)hat"j" + (z - 3)hat"k" = lambda(3hat"i" - 2hat"j" + 6hat"k")`
APPEARS IN
संबंधित प्रश्न
Find the equation of the plane through the intersection of the planes 3x − 4y + 5z = 10 and 2x + 2y − 3z = 4 and parallel to the line x = 2y = 3z.
Find the equation of the plane containing the line \[\frac{x + 1}{- 3} = \frac{y - 3}{2} = \frac{z + 2}{1}\] and the point (0, 7, −7) and show that the line \[\frac{x}{1} = \frac{y - 7}{- 3} = \frac{z + 7}{2}\] also lies in the same plane.
Find the equation of the plane which contains two parallel lines\[\frac{x - 4}{1} = \frac{y - 3}{- 4} = \frac{z - 2}{5}\text{ and }\frac{x - 3}{1} = \frac{y + 2}{- 4} = \frac{z}{5} .\]
Show that the lines \[\frac{x + 4}{3} = \frac{y + 6}{5} = \frac{z - 1}{- 2}\] and 3x − 2y + z + 5 = 0 = 2x + 3y + 4z − 4 intersect. Find the equation of the plane in which they lie and also their point of intersection.
Find the coordinates of the point where the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\] intersect the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane.
Find the vector equation of the plane passing through three points with position vectors \[\hat{i} + \hat{j} - 2 \hat{k} , 2 \hat{i} - \hat{j} + \hat{k} \text{ and } \hat{i} + 2 \hat{j} + \hat{k} .\] Also, find the coordinates of the point of intersection of this plane and the line \[\vec{r} = 3 \hat{i} - \hat{j} - \hat{k} + \lambda\left( 2 \hat{i} - 2 \hat{j} + \hat{k} \right) .\]
Find the distance of the point with position vector
The plane 2x − (1 + λ) y + 3λz = 0 passes through the intersection of the planes
The equation of the plane through the line x + y + z + 3 = 0 = 2x − y + 3z + 1 and parallel to the line \[\frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] is
A plane meets the coordinate axes at A, B and C such that the centroid of ∆ABC is the point (a, b, c). If the equation of the plane is \[\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = k,\] then k =
A vector parallel to the line of intersection of the planes\[\vec{r} \cdot \left( 3 \hat{i} - \hat{j} + \hat{k} \right) = 1 \text{ and } \vec{r} \cdot \left( \hat{i} + 4 \hat{j} - 2 \hat{k} \right) = 2\] is
The equation of the plane which cuts equal intercepts of unit length on the coordinate axes is
Find the equation of the plane passing through the intersection of the planes `vecr . (hati + hatj + hatk)` and `vecr.(2hati + 3hatj - hatk) + 4 = 0` and parallel to the x-axis. Hence, find the distance of the plane from the x-axis.
Find the distance of the point (–1, –5, – 10) from the point of intersection of the line `vec"r" = 2hat"i" - hat"j" + 2hat"k" + lambda(3hat"i" + 4hat"j" + 2hat"k")` and the plane `vec"r" * (hat"i" - hat"j" + hat"k")` = 5
Show that the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/4` and `(x - 4)/5 = (y - 1)/2` = z intersect. Also, find their point of intersection.
Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.
The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is `"a"x + "b"y +- (sqrt("a"^2 + "b"^2) tan alpha)`z = 0.
Find the equation of the plane through the intersection of the planes `vec"r" * (hat"i" + 3hat"j") - 6` = 0 and `vec"r" * (3hat"i" - hat"j" - 4hat"k")` = 0, whose perpendicular distance from origin is unity.
ABCD be a parallelogram and M be the point of intersection of the diagonals, if O is any point, then OA + OB + OC + OD is equal to