Advertisements
Advertisements
प्रश्न
The plane ax + by = 0 is rotated about its line of intersection with the plane z = 0 through an angle α. Prove that the equation of the plane in its new position is `"a"x + "b"y +- (sqrt("a"^2 + "b"^2) tan alpha)`z = 0.
उत्तर
Given planes are:
ax + by = 0 ......(i)
z = 0 ......(ii)
Equation of any plane passing through the line of intersection of plane (i) and (ii) is
(ax + by) + kz = 0
⇒ ax + by + kz = 0 ......(iii)
Dividing both sides by `sqrt("a"^2 + "b"^2 + "k"^2)`, we get
`"a"/sqrt("a"^2 + "b"^2 + "k"^2) x + "b"/sqrt("a"^2 + "b"^2 + "k"^2) y + "k"/sqrt("a"^2 + "b"^2 + "k"^2) z` = 0
∴ Direction cosines of the normal to the plane are
`"a"/sqrt("a"^2 + "b"^2 + "k"^2)`
`"b"/sqrt("a"^2 + "b"^2 + "k"^2)`
`"k"/sqrt("a"^2 + "b"^2 + "k"^2)`
And the direction cosines of the plane (i) are
`"a"/sqrt("a"^2 + "b"^2), "b"/sqrt("a"^2 + "b"^2)`, 0
Since, a is the angle between the planes (i) and (iii), we get
`cos alpha = ("a"."a" + "b"."b" + "k".0)/(sqrt("a"^2 + "b"^2 + "k"^2)*sqrt("a"^2 + "b"^2)`
⇒ `cos alpha = ("a"^2 + "b"^2)/(sqrt("a"^2 + "b"^2 + "k"^2)*sqrt("a"^2 + "b"^2)`
⇒ `cos alpha = sqrt("a"^2 + "b"^2)/sqrt("a"^2 + "b"^2 + "k"^2)`
⇒ `cos^2alpha = ("a"^2 + "b"^2)/sqrt("a"^2 + "b"^2 + "k"^2)`
⇒ (a2 + b2 + k2) cos2α = a2 + b2
⇒ a2 cos2α + b2 cos2α + k2 cos2α = a2 + b2
⇒ k2 cos2α = a2 – a2 cos2α + b2 – b2 cos2α
⇒ k2 cos2α = a2(1 – cos2α) + b2(1 – cos2α)
⇒ k2 cos2α = a2 sin2α + b2 sin2α
⇒ k2 cos2α = (a2 + b2) sin2α
⇒ `"k"^2 = ("a"^2 + "b"^2) (sin^2 alpha)/(cos^2 alpha)`
⇒ k = `+- sqrt("a"^2 + "b"^2) . tan alpha`
Putting the value of k in equation (iii) we get
`"a"x + "b"y +- (sqrt("a"^2 + "b"^2) tan alpha)`z = 0 which is the required equation of plane.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the equation of the plane through the intersection of the planes 3x – y + 2z – 4 = 0 and x + y + z – 2 = 0 and the point (2, 2, 1).
Find the vector equation of the plane passing through the intersection of the planes `vecr.(2hati + 2hatj - 3hatk) = 7, vecr.(2hati + 5hatj + 3hatk) = 9` and through the point (2, 1, 3)
Find the equation of the plane through the intersection of the planes 3x − 4y + 5z = 10 and 2x + 2y − 3z = 4 and parallel to the line x = 2y = 3z.
Find the coordinates of the point where the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\] intersects the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane.
Find the distance of the point (−1, −5, −10) from the point of intersection of the line \[\vec{r} = \left( 2 \hat{i} - \hat{j} + 2 \hat{k} \right) + \lambda\left( 3 \hat{i}+ 4 \hat{j} + 2 \hat{k} \right)\] and the plane \[\vec{r} . \left( \hat{i} - \hat{j} + \hat{k} \right) = 5 .\]
Find the distance of the point P(−1, −5, −10) from the point of intersection of the line joining the points A(2, −1, 2) and B(5, 3, 4) with the plane \[x - y + z = 5\] .
Find the distance of the point P(3, 4, 4) from the point, where the line joining the points A(3, −4, −5) and B(2, −3, 1) intersects the plane 2x + y + z = 7.
Find the distance of the point (1, -5, 9) from the plane
Show that the lines \[\frac{x + 4}{3} = \frac{y + 6}{5} = \frac{z - 1}{- 2}\] and 3x − 2y + z + 5 = 0 = 2x + 3y + 4z − 4 intersect. Find the equation of the plane in which they lie and also their point of intersection.
Find the equation of the plane determined by the intersection of the lines \[\frac{x + 3}{3} = \frac{y}{- 2} = \frac{z - 7}{6} \text{ and }\frac{x + 6}{1} = \frac{y + 5}{- 3} = \frac{z - 1}{2}\]
Find the coordinates of the point where the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\] intersect the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane.
Find the vector equation of the plane passing through three points with position vectors \[\hat{i} + \hat{j} - 2 \hat{k} , 2 \hat{i} - \hat{j} + \hat{k} \text{ and } \hat{i} + 2 \hat{j} + \hat{k} .\] Also, find the coordinates of the point of intersection of this plane and the line \[\vec{r} = 3 \hat{i} - \hat{j} - \hat{k} + \lambda\left( 2 \hat{i} - 2 \hat{j} + \hat{k} \right) .\]
The equation of the plane through the line x + y + z + 3 = 0 = 2x − y + 3z + 1 and parallel to the line \[\frac{x}{1} = \frac{y}{2} = \frac{z}{3}\] is
The distance of the point (−1, −5, −10) from the point of intersection of the line \[\vec{r} = 2 \hat{i}- \hat{j} + 2 \hat{k} + \lambda\left( 3 \hat{i} + 4 \hat{j}+ 12 \hat{k} \right)\] and the plane \[\vec{r} \cdot \left( \hat{i} - \hat{j} + \hat{k} \right) = 5\] is
The equation of the plane through the intersection of the planes ax + by + cz + d = 0 andlx + my + nz + p = 0 and parallel to the line y=0, z=0
The equation of the plane which cuts equal intercepts of unit length on the coordinate axes is
Find the equation of the plane passing through the intersection of the planes `vecr . (hati + hatj + hatk)` and `vecr.(2hati + 3hatj - hatk) + 4 = 0` and parallel to the x-axis. Hence, find the distance of the plane from the x-axis.
Find the distance of the point (–1, –5, – 10) from the point of intersection of the line `vec"r" = 2hat"i" - hat"j" + 2hat"k" + lambda(3hat"i" + 4hat"j" + 2hat"k")` and the plane `vec"r" * (hat"i" - hat"j" + hat"k")` = 5
Find the vector equation of the line which is parallel to the vector `3hat"i" - 2hat"j" + 6hat"k"` and which passes through the point (1, –2, 3).
Show that the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/4` and `(x - 4)/5 = (y - 1)/2` = z intersect. Also, find their point of intersection.
Prove that the line through A(0, – 1, – 1) and B(4, 5, 1) intersects the line through C(3, 9, 4) and D(– 4, 4, 4).
Find the equation of the plane through the intersection of the planes `vec"r" * (hat"i" + 3hat"j") - 6` = 0 and `vec"r" * (3hat"i" - hat"j" - 4hat"k")` = 0, whose perpendicular distance from origin is unity.
Find the equation of line parallel to the y-axis and drawn through the point of intersection of x – 4y + 1 = 0 and 2x + y – 7 = 0.
ABCD be a parallelogram and M be the point of intersection of the diagonals, if O is any point, then OA + OB + OC + OD is equal to