हिंदी

Prove that the line through A(0, – 1, – 1) and B(4, 5, 1) intersects the line through C(3, 9, 4) and D(– 4, 4, 4). - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the line through A(0, – 1, – 1) and B(4, 5, 1) intersects the line through C(3, 9, 4) and D(– 4, 4, 4).

योग

उत्तर

Given points are A(0, – 1, – 1) and B(4, 5, 1) C(3, 9, 4) and D(– 4, 4, 4)

Cartesian form of equation AB is

`(x - 0)/(4 - 0) = (y + 1)/(5 + 1) = (z + 1)/(1 + 1)`

⇒ `x/4 = (y + 1)/6 = (z + 1)/2`

And its vector form is `vec"r" = (-hat"j" - hat"k") + lambda(4hat"i" + 6hat"j" + 2hat"k")`

Similarly, equation of CD is

`(x - 3)/(-4 - 3) = (y - 9)/(4 - 9) = (z - 4)/(4 - 4)`

⇒ `(x - 3)/(-7) = (y - 9)/(-5) = (z - 4)/0`

And its vector form is `vec"r" = (3hat"i" + 9hat"j" + 4hat"k") + mu(-7hat"i" - 5hat"j")`

Now, here `vec"a"_1 = -hat"j" - hat"k", vec"b"_1 = 4hat"i" + 6hat"j" + 2hat"k"`

`vec"a"_2 = 3hat"i" + 9hat"j" + 4hat"k", vec"b"_2 = -7hat"i" - 5hat"j"`

Shortest distance between AB and CD

S.D. = `|((vec"a"_2 - vec"a"_1)*(vec"b"_1 xx vec"b"_2))/|vec"b"_1 xx vec"b"_2||`

`vec"a"_2 - vec"a"_1 = (3hat"i" + 9hat"j" + 4hat"k") - (-hat"j" - hat"k")`

= `3hat"i" + 10hat"j" + 5hat"k"`

`vec"a" xx vec"b"_2 = |(hat"i", hat"j", hat"k"),(4, 6, 2),(-7, -5, 0)|`

= `hat"i"(0 + 10) - hat"j"(0 + 14) + hat"k"(-20 + 42)`

= `10hat"i" - 14hat"j" + 22hat"k"`

`|vec"b"_1 xx vec"b"_2| = sqrt((10)^2 + (-14)62 + (22)^2)`

= `sqrt(100 + 196 + 484)`

= `sqrt(780)`

∴ S.D. = `((3hat"i" + 10hat"j" + 5hat"k")*(10hat"i" - 14hat"j" + 22hat"k"))/sqrt(780)`

= `(30 - 140 + 110)/sqrt(780)`

= 0

Hence, the two lines intersect each other.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Three Dimensional Geometry - Exercise [पृष्ठ २३५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 11 Three Dimensional Geometry
Exercise | Q 5 | पृष्ठ २३५

संबंधित प्रश्न

Find the equation of the plane through the intersection of the planes 3x – y + 2z – 4 = 0 and x + y + z – 2 = 0 and the point (2, 2, 1).


Find the vector equation of the plane passing through the intersection of the planes `vecr.(2hati + 2hatj - 3hatk) = 7, vecr.(2hati + 5hatj + 3hatk) = 9` and through the point (2, 1, 3)


Find the equation of the plane passing through the line of intersection of the planes `vecr.(hati + hatj + hatk) = 1` and `vecr.(2hati + 3hatj -hatk) + 4 = 0` and parallel to x-axis.


Find the equation of the plane which contains the line of intersection of the planes `vecrr.(hati + 2hatj + 3hatk) - 4 = 0, vecr.(2hati + htj - hatk) + 5 = 0`,  and which is perpendicular to the plane `vecr.(5hati + 3hatj - 6hatk) + 8 = 0`.


Find the equation of the plane through the intersection of the planes 3x − 4y + 5z = 10 and 2x + 2y − 3z = 4 and parallel to the line x = 2y = 3z.

 

Find the coordinates of the point where the line  \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\]   intersects the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane. 

 

Find the distance of the point P(−1, −5, −10) from the point of intersection of the line joining the points A(2, −1, 2) and B(5, 3, 4) with the plane  \[x - y + z = 5\] . 

 


Show that the plane whose vector equation is \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j} - \hat{k}  \right) = 3\] contains the line whose vector equation is \[\vec{r} = \hat{i} + \hat{j}  + \lambda\left( 2 \hat{i}  + \hat{j} + 4 \hat{k}  \right) .\]

 

Find the equation of the plane determined by the intersection of the lines \[\frac{x + 3}{3} = \frac{y}{- 2} = \frac{z - 7}{6} \text{ and  }\frac{x + 6}{1} = \frac{y + 5}{- 3} = \frac{z - 1}{2}\]

 

Find the coordinates of the point where the line \[\frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2}\] intersect the plane x − y + z − 5 = 0. Also, find the angle between the line and the plane.

  

Find the vector equation of the plane passing through three points with position vectors  \[\hat{i}  + \hat{j}  - 2 \hat{k}  , 2 \hat{i}  - \hat{j}  + \hat{k}  \text{ and }  \hat{i}  + 2 \hat{j}  + \hat{k}  .\]  Also, find the coordinates of the point of intersection of this plane and the line  \[\vec{r} = 3 \hat{i}  - \hat{j}  - \hat{k}  + \lambda\left( 2 \hat{i}  - 2 \hat{j} + \hat{k} \right) .\]

 

The distance of the point (−1, −5, −10) from the point of intersection of the line \[\vec{r} = 2 \hat{i}- \hat{j} + 2 \hat{k}  + \lambda\left( 3 \hat{i}  + 4 \hat{j}+ 12 \hat{k}  \right)\]   and the plane \[\vec{r} \cdot \left( \hat{i} - \hat{j} + \hat{k}  \right) = 5\] is 

 
 

The equation of the plane through the intersection of the planes ax + by + cz + d = 0 andlx + my + nz + p = 0 and parallel to the line y=0, z=0


The equation of the plane which cuts equal intercepts of unit length on the coordinate axes is


Find the equation of the plane passing through the intersection of the planes `vecr . (hati + hatj + hatk)` and `vecr.(2hati + 3hatj - hatk) + 4 = 0` and parallel to the x-axis. Hence, find the distance of the plane from the x-axis.


Show that the lines `("x"-1)/(3) = ("y"-1)/(-1) = ("z"+1)/(0) = λ and  ("x"-4)/(2) = ("y")/(0) = ("z"+1)/(3)` intersect. Find their point of intersection. 


Find the vector equation of the line which is parallel to the vector `3hat"i" - 2hat"j" + 6hat"k"` and which passes through the point (1, –2, 3).


Show that the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/4` and `(x - 4)/5 = (y - 1)/2` = z intersect. Also, find their point of intersection.


Find the equation of the plane which is perpendicular to the plane 5x + 3y + 6z + 8 = 0 and which contains the line of intersection of the planes x + 2y + 3z – 4 = 0 and 2x + y – z + 5 = 0.


Find the equation of the plane through the intersection of the planes `vec"r" * (hat"i" + 3hat"j") - 6` = 0 and `vec"r" * (3hat"i" - hat"j" - 4hat"k")` = 0, whose perpendicular distance from origin is unity.


ABCD be a parallelogram and M be the point of intersection of the diagonals, if O is any point, then OA + OB + OC + OD is equal to


The equation of straight line through the intersection of the lines x – 2y = 1 and x + 3y = 2 and parallel to 3x + 4y = 0 is


The equation of the curve passing through the point `(0, pi/4)` whose differential equation is sin x cos y dx + cos x sin y dy = 0, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×