हिंदी

Find the Value of the Integral ∫ 1 0 X 2 1 + X 3 𝒅𝒙 Using Simpson’S (1/3)𝒕𝒉 Rule. - Applied Mathematics 2

Advertisements
Advertisements

प्रश्न

Find the value of the integral `int_0^1 x^2/(1+x^3`𝒅𝒙 using Simpson’s (1/3)𝒕𝒉 rule.

योग

उत्तर

Let I = `int_0^1 x^2/(1+x^3)dx`

a=0 , b=1
Dividing limits into 4 parts i.e n = 4
`thereforeh=(b-a)/n=1/4=0.25`

𝒙𝟎=0 𝒙𝟏=0.25 𝒙𝟐=0.50 𝒙𝟑=0.75 𝒙𝟒=1.0
𝒚𝟎=0 𝒚𝟏=0.06153 𝒚𝟐=0.2222 𝒚𝟑=0.39560 𝒚𝟒=𝟎.𝟓

Simpson’s (𝟏/𝟑)𝒓𝒅 rule :

`"I"=h/3[X+2E+40]`  --------------(2)

𝑿=𝒔𝒖𝒎 𝒐𝒇 𝒆𝒙𝒕𝒓𝒆𝒎𝒆 𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔=𝒚𝟎+𝒚𝟒=𝟎+𝟎.𝟓=𝟎.𝟓
𝑬=𝒔𝒖𝒎 𝒐𝒇 𝒆𝒗𝒆𝒏 𝒃𝒂𝒔𝒆 𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔= 𝒚𝟐=𝟎.𝟐𝟐𝟐𝟐
𝑶=𝒔𝒖𝒎 𝒐𝒇 𝒐𝒅𝒅 𝒃𝒂𝒔𝒆 𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔= 𝒚𝟏+𝒚𝟑=𝟎.𝟎𝟔𝟏𝟓𝟑+𝟎.𝟑𝟗𝟓𝟔𝟎=𝟎.𝟒𝟓𝟕𝟏𝟑

`"I"=(0.25)/3`(𝟎.𝟓+𝟐×𝟎.𝟐𝟐𝟐𝟐+𝟒×𝟎.𝟒𝟓𝟕𝟏𝟑) ……………(from 2)

∴ I = 0.23108

shaalaa.com
Numerical Integration‐ by Simpson’S 1/3rd
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (June) CBCGS
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Course
Use app×