Advertisements
Advertisements
प्रश्न
Find the value of the integral `int_0^1 x^2/(1+x^3`𝒅𝒙 using Simpson’s (1/3)𝒕𝒉 rule.
योग
उत्तर
Let I = `int_0^1 x^2/(1+x^3)dx`
a=0 , b=1
Dividing limits into 4 parts i.e n = 4
`thereforeh=(b-a)/n=1/4=0.25`
𝒙𝟎=0 | 𝒙𝟏=0.25 | 𝒙𝟐=0.50 | 𝒙𝟑=0.75 | 𝒙𝟒=1.0 |
𝒚𝟎=0 | 𝒚𝟏=0.06153 | 𝒚𝟐=0.2222 | 𝒚𝟑=0.39560 | 𝒚𝟒=𝟎.𝟓 |
Simpson’s (𝟏/𝟑)𝒓𝒅 rule :
`"I"=h/3[X+2E+40]` --------------(2)
𝑿=𝒔𝒖𝒎 𝒐𝒇 𝒆𝒙𝒕𝒓𝒆𝒎𝒆 𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔=𝒚𝟎+𝒚𝟒=𝟎+𝟎.𝟓=𝟎.𝟓
𝑬=𝒔𝒖𝒎 𝒐𝒇 𝒆𝒗𝒆𝒏 𝒃𝒂𝒔𝒆 𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔= 𝒚𝟐=𝟎.𝟐𝟐𝟐𝟐
𝑶=𝒔𝒖𝒎 𝒐𝒇 𝒐𝒅𝒅 𝒃𝒂𝒔𝒆 𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔= 𝒚𝟏+𝒚𝟑=𝟎.𝟎𝟔𝟏𝟓𝟑+𝟎.𝟑𝟗𝟓𝟔𝟎=𝟎.𝟒𝟓𝟕𝟏𝟑
`"I"=(0.25)/3`(𝟎.𝟓+𝟐×𝟎.𝟐𝟐𝟐𝟐+𝟒×𝟎.𝟒𝟓𝟕𝟏𝟑) ……………(from 2)
∴ I = 0.23108
shaalaa.com
Numerical Integration‐ by Simpson’S 1/3rd
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?