Advertisements
Advertisements
Question
Find the value of the integral `int_0^1 x^2/(1+x^3`๐ ๐ using Simpson’s (1/3)๐๐ rule.
Solution
Let I = `int_0^1 x^2/(1+x^3)dx`
a=0 , b=1
Dividing limits into 4 parts i.e n = 4
`thereforeh=(b-a)/n=1/4=0.25`
๐๐=0 | ๐๐=0.25 | ๐๐=0.50 | ๐๐=0.75 | ๐๐=1.0 |
๐๐=0 | ๐๐=0.06153 | ๐๐=0.2222 | ๐๐=0.39560 | ๐๐=๐.๐ |
Simpson’s (๐/๐)๐๐ rule :
`"I"=h/3[X+2E+40]` --------------(2)
๐ฟ=๐๐๐ ๐๐ ๐๐๐๐๐๐๐ ๐๐๐
๐๐๐๐๐๐=๐๐+๐๐=๐+๐.๐=๐.๐
๐ฌ=๐๐๐ ๐๐ ๐๐๐๐ ๐๐๐๐ ๐๐๐
๐๐๐๐๐๐= ๐๐=๐.๐๐๐๐
๐ถ=๐๐๐ ๐๐ ๐๐
๐
๐๐๐๐ ๐๐๐
๐๐๐๐๐๐= ๐๐+๐๐=๐.๐๐๐๐๐+๐.๐๐๐๐๐=๐.๐๐๐๐๐
`"I"=(0.25)/3`(๐.๐+๐×๐.๐๐๐๐+๐×๐.๐๐๐๐๐) ……………(from 2)
∴ I = 0.23108