Advertisements
Advertisements
Question
If ๐ satisfies the equation `(dy)/(dx)=x^2y-1` with `x_0=0, y_0=1` using Taylor’s Series Method find ๐ ๐๐ ๐= ๐.๐ (take h=0.1).
Solution
`(dy)/(dx)=x^2y-1` `x_0=0, y_0=1` ๐=๐.๐
To find : ๐(๐.๐)
`y'=x^2y-1 , y_0'=-1`
`y''=x^2y'+2xy , y_0''=0`
`y'''=x^2y''+2y'x+2y+2xy , y_0'''=0`
Taylor’s series is :
`y=y_0+h.y_0'+h^2/(2!)y_0''+h^3/(3!)y_0'''+...`
∴ ๐(๐.๐)=๐+๐.๐(−๐)+๐+`(0.1)^3/(3!)(2)`
∴ ๐(๐.๐)=๐.๐๐๐๐
APPEARS IN
RELATED QUESTIONS
Use Taylor’s series method to find a solution of `(dy)/(dx) =1+y^2, y(0)=0` At x = 0.1 taking h=0.1 correct upto 3 decimal places.
Use Taylor series method to find a solution of `dy/dx=xy+1,y(0)=0` X=0.2 taking h=0.1 correct upto 4 decimal places.
Expand 2 ๐3 + 7 ๐2 + ๐ – 6 in power of (๐ – 2) by using Taylors Theorem.