English

If ๐’š Satisfies the Equation D Y D X = X 2 Y โˆ’ 1 with X 0 = 0 , Y 0 = 1 Using Taylorโ€™S Series Method Find ๐’š ๐’‚๐’• ๐’™= ๐ŸŽ.๐Ÿ (Take H=0.1). - Applied Mathematics 2

Advertisements
Advertisements

Question

If ๐’š satisfies the equation `(dy)/(dx)=x^2y-1` with `x_0=0, y_0=1` using Taylor’s Series Method find ๐’š ๐’‚๐’• ๐’™= ๐ŸŽ.๐Ÿ (take h=0.1).

Sum

Solution

`(dy)/(dx)=x^2y-1` `x_0=0, y_0=1` ๐’‰=๐ŸŽ.๐Ÿ
To find : ๐’š(๐ŸŽ.๐Ÿ)

`y'=x^2y-1  ,  y_0'=-1`

`y''=x^2y'+2xy  ,  y_0''=0`

`y'''=x^2y''+2y'x+2y+2xy  ,  y_0'''=0`

Taylor’s series is :

`y=y_0+h.y_0'+h^2/(2!)y_0''+h^3/(3!)y_0'''+...`

∴ ๐’š(๐ŸŽ.๐Ÿ)=๐Ÿ+๐ŸŽ.๐Ÿ(−๐Ÿ)+๐ŸŽ+`(0.1)^3/(3!)(2)`

∴ ๐’š(๐ŸŽ.๐Ÿ)=๐ŸŽ.๐Ÿ—๐ŸŽ๐ŸŽ๐Ÿ‘

shaalaa.com
Taylorโ€™S Series Method
  Is there an error in this question or solution?
2017-2018 (June) CBCGS
Share
Notifications

Englishเคนเคฟเค‚เคฆเฅ€เคฎเคฐเคพเค เฅ€


      Forgot password?
Use app×