English

P Use Taylor Series Method to Find a Solution of D Y D X = X Y + 1 , Y ( 0 ) = 0 X=0.2 Taking H=0.1 Correct Upto 4 Decimal Places. - Applied Mathematics 2

Advertisements
Advertisements

Question

Use Taylor series method to find a solution of dydx=xy+1,y(0)=0 X=0.2 taking h=0.1 correct upto 4 decimal places. 

Solution

(I)dydx=xy+1,         x0=,y0=0=0, h=0.1 

f(x,y)=1+xy 

y=1+xy                           y0=1  

y=xy+y                          y0=0 

y=xy+2y                     yo=2 

Taylor’s series is given by , 

y(0.1)=y0+h.y0+h22!y0+h33!y0+ 

=0+0.1(1)+0+(0.1)36    (𝟐) 

y(0.1)=0.1003 

(II) x1=0,y1=0.1003,h=0.1 

y=1+xy                           y0=1.01003 

y=xy+y                        y0=0.201303

y=xy+2y                y0=2.0401903 

y(0.2)=0.1003+1.01003(0.1)+0.122!(0.201303)+0.136(2.0401903) 

y(0.2)=0202708

 

shaalaa.com
Taylor’S Series Method
  Is there an error in this question or solution?
2016-2017 (June) CBCGS
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.