Advertisements
Advertisements
प्रश्न
Use Taylor series method to find a solution of `dy/dx=xy+1,y(0)=0` X=0.2 taking h=0.1 correct upto 4 decimal places.
उत्तर
(I)` dy/dx=xy+1 ,` `x_0=, y_0=0=0, h=0.1`
`f(x,y)=1+xy`
`y'=1+xy` ` y'0=1`
`y''=xy+y` `y''0=0`
`y'''=xy+2y'` ` y'''o=2`
Taylor’s series is given by ,
`y(0.1)=y_0+h. y'_0+h^2/(2!) y''_0+h^3/(3!) y'''0 +`
=`0+0.1(1)+0+ ((0.1)^3)/6` (𝟐)
`y(0.1)= 0.1003`
(II) `x_1=0, y_1=0.1003,h=0.1`
`y'=1+xy` ` y'0=1.01003`
`y''=xy'+y` `y''0=0.201303`
`y'''=xy''+2y'` `y'''0=2.0401903`
∴` y(0.2)=0.1003+1.01003(0.1)+0.1^2/(2!) (0.201303)+0.1^3/6(2.0401903)`
∴` y (0.2)=0202708`
APPEARS IN
संबंधित प्रश्न
If 𝒚 satisfies the equation `(dy)/(dx)=x^2y-1` with `x_0=0, y_0=1` using Taylor’s Series Method find 𝒚 𝒂𝒕 𝒙= 𝟎.𝟏 (take h=0.1).
Use Taylor’s series method to find a solution of `(dy)/(dx) =1+y^2, y(0)=0` At x = 0.1 taking h=0.1 correct upto 3 decimal places.
Expand 2 𝒙3 + 7 𝒙2 + 𝒙 – 6 in power of (𝒙 – 2) by using Taylors Theorem.