рд╣рд┐рдВрджреА

Expand 2 ЁЭТЩ3 + 7 ЁЭТЩ2 + ЁЭТЩ тАУ 6 in Power of (ЁЭТЩ тАУ 2) by Using Taylors Theorem. - Applied Mathematics 1

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

Expand 2 ЁЭТЩ3 + 7 ЁЭТЩ2 + ЁЭТЩ – 6 in power of (ЁЭТЩ – 2) by using Taylors Theorem.

рдпреЛрдЧ

рдЙрддреНрддрд░

By Taylor’s series,

`f(x)=f(a)+(x+a)f'(a)+(x+a)^2/(2!)f''(a)+(x+a)^2/(3!)f'''(a)+`.........

Here,
f(ЁЭСе) = 2 ЁЭСе3 + 7 ЁЭСе2 + ЁЭСе – 6
f(2) = 2 (2)3 + 7 (2)2 + 2 – 6 = 40
f’(ЁЭСе) =6x2+ 14x + 1
f’(2) = 6 (2)2 + 14 (2) + 1 = 53
f’’(ЁЭСе) = 12x + 14
f’’(2) = 12(2) + 14 = 38
f’’’(ЁЭСе) = 12
f’’’(2) = 12
f’’’’(ЁЭСе) = 0 .

`f(x)=f(2)+(x-2)f'(2)+(x-2)^2/(2!)f''(a)+(x-2)^3/(3!)f'''(2)+0`

2 ЁЭТЩ3 + 7 ЁЭТЩ2 + ЁЭТЩ – 6 = 40 + (x - 2) (53)+`(x-2)^2/(2!)(38)+(x-2)^3/(3!)(12)`

2 ЁЭТЩ3 + 7 ЁЭТЩ2 + ЁЭТЩ – 6 = `2(x - 2)^3+19(x - 2)^2+53(x-2)+40`

shaalaa.com
TaylorтАЩS Series Method
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
2018-2019 (December) CBCGS
Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Course
Use app×