Advertisements
Advertisements
рдкреНрд░рд╢реНрди
Expand 2 ЁЭТЩ3 + 7 ЁЭТЩ2 + ЁЭТЩ – 6 in power of (ЁЭТЩ – 2) by using Taylors Theorem.
рдЙрддреНрддрд░
By Taylor’s series,
`f(x)=f(a)+(x+a)f'(a)+(x+a)^2/(2!)f''(a)+(x+a)^2/(3!)f'''(a)+`.........
Here,
f(ЁЭСе) = 2 ЁЭСе3 + 7 ЁЭСе2 + ЁЭСе – 6
f(2) = 2 (2)3 + 7 (2)2 + 2 – 6 = 40
f’(ЁЭСе) =6x2+ 14x + 1
f’(2) = 6 (2)2 + 14 (2) + 1 = 53
f’’(ЁЭСе) = 12x + 14
f’’(2) = 12(2) + 14 = 38
f’’’(ЁЭСе) = 12
f’’’(2) = 12
f’’’’(ЁЭСе) = 0 .
`f(x)=f(2)+(x-2)f'(2)+(x-2)^2/(2!)f''(a)+(x-2)^3/(3!)f'''(2)+0`
2 ЁЭТЩ3 + 7 ЁЭТЩ2 + ЁЭТЩ – 6 = 40 + (x - 2) (53)+`(x-2)^2/(2!)(38)+(x-2)^3/(3!)(12)`
2 ЁЭТЩ3 + 7 ЁЭТЩ2 + ЁЭТЩ – 6 = `2(x - 2)^3+19(x - 2)^2+53(x-2)+40`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
If ЁЭТЪ satisfies the equation `(dy)/(dx)=x^2y-1` with `x_0=0, y_0=1` using Taylor’s Series Method find ЁЭТЪ ЁЭТВЁЭТХ ЁЭТЩ= ЁЭЯО.ЁЭЯП (take h=0.1).
Use Taylor’s series method to find a solution of `(dy)/(dx) =1+y^2, y(0)=0` At x = 0.1 taking h=0.1 correct upto 3 decimal places.
Use Taylor series method to find a solution of `dy/dx=xy+1,y(0)=0` X=0.2 taking h=0.1 correct upto 4 decimal places.