हिंदी

If U = Sin − 1 [ X 1 3 + Y 1 3 X 1 2 + Y 1 2 ] Prove Hat X 2 ∂ 2 U ∂ 2 X + 2 X Y ∂ 2 U ∂ X ∂ Y ∂ 2 U ∂ 2 Y = Tan U 144 [ Tan 2 U + 13 ] . - Applied Mathematics 1

Advertisements
Advertisements

प्रश्न

If U `=sin^(-1)[(x^(1/3)+y^(1/3))/(x^(1/2)+y^(1/2))]`prove that `x^2(del^2u)/(del^2x)+2xy(del^2u)/(delxdely)+y^2(del^2u)/(del^2y)=(tanu)/144[tan^2"U"+13].`

योग

उत्तर १

Given `"U"=sin^(-1)[(x^(1/3)+y^(1/3))/(x^(1/2)+y^(1/2))]`

z = sin u =`[(x^(1/3)+y^(1/3))/(x^(1/2)+y^(1/2))]^(1/2)`is homogeneous function in x and y with degree `-1/12`

∴ We have the result,

If z = f (u) is homogeneous function of degree x and y then

`x^2(del^2u)/(del^2x)+2xy(del^2u)/(delxdely)+y^2(del^2u)/(del^2y)`= g (u) [g' (u) – 1] where g(u) = n `9(f(u))/(f'(u)).`

`n = -1/12`, f (u) = sin u, f'(u) = cos u

`therefore g(U)=-1/12(sinu)/(cosu)`

`therefore g(U) =-1/21tan"U"`
`thereforeg'(U)=-1/12sec^2"U"`

By above result,

`x^2(del^2u)/(del^2x)+2xy(del^2u)/(delxdely)+y^2(del^2u)/(del^2y)=-1/12[-1/12sec^2"U"-1]`

`=1/12[1/12sec^2"U"-1]`

`=1/12[1/12sec^2"U"+1]=1/12[(1+tan^2u)/12+1]`

`=1/144tan"U"[tan^2"U"+13]`

`therefore x^2(del^2u)/(del^2x) +2xy(del^2u)/(delxdely) +y^2(del^2u)/(del^2y)=tanu/144[tan^2"U"+13].`

Hence proved

shaalaa.com

उत्तर २

Given `"U"=sin^(-1)[(x^(1/3)+y^(1/3))/(x^(1/2)+y^(1/2))]`

z = sin u =`[(x^(1/3)+y^(1/3))/(x^(1/2)+y^(1/2))]^(1/2)`is homogeneous function in x and y with degree `-1/12`

∴ We have the result,

If z = f (u) is homogeneous function of degree x and y then

`x^2(del^2u)/(del^2x)+2xy(del^2u)/(delxdely)+y^2(del^2u)/(del^2y)`= g (u) [g' (u) – 1] where g(u) = n `9(f(u))/(f'(u)).`

`n = -1/12`, f (u) = sin u, f'(u) = cos u

`therefore g(U)=-1/12(sinu)/(cosu)`

`therefore g(U) =-1/21tan"U"`
`thereforeg'(U)=-1/12sec^2"U"`

By above result,

`x^2(del^2u)/(del^2x)+2xy(del^2u)/(delxdely)+y^2(del^2u)/(del^2y)=-1/12[-1/12sec^2"U"-1]`

`=1/12[1/12sec^2"U"-1]`

`=1/12[1/12sec^2"U"+1]=1/12[(1+tan^2u)/12+1]`

`=1/144tan"U"[tan^2"U"+13]`

`therefore x^2(del^2u)/(del^2x) +2xy(del^2u)/(delxdely) +y^2(del^2u)/(del^2y)=tanu/144[tan^2"U"+13].`

Hence proved

shaalaa.com
Euler’s Theorem on Homogeneous functions with two and three independent variables (with proof)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (December) CBCGS
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Course
Use app×