Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If ЁЭТЪ satisfies the equation `(dy)/(dx)=x^2y-1` with `x_0=0, y_0=1` using Taylor’s Series Method find ЁЭТЪ ЁЭТВЁЭТХ ЁЭТЩ= ЁЭЯО.ЁЭЯП (take h=0.1).
рдЙрддреНрддрд░
`(dy)/(dx)=x^2y-1` `x_0=0, y_0=1` ЁЭТЙ=ЁЭЯО.ЁЭЯП
To find : ЁЭТЪ(ЁЭЯО.ЁЭЯП)
`y'=x^2y-1 , y_0'=-1`
`y''=x^2y'+2xy , y_0''=0`
`y'''=x^2y''+2y'x+2y+2xy , y_0'''=0`
Taylor’s series is :
`y=y_0+h.y_0'+h^2/(2!)y_0''+h^3/(3!)y_0'''+...`
∴ ЁЭТЪ(ЁЭЯО.ЁЭЯП)=ЁЭЯП+ЁЭЯО.ЁЭЯП(−ЁЭЯП)+ЁЭЯО+`(0.1)^3/(3!)(2)`
∴ ЁЭТЪ(ЁЭЯО.ЁЭЯП)=ЁЭЯО.ЁЭЯЧЁЭЯОЁЭЯОЁЭЯС
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
Use Taylor’s series method to find a solution of `(dy)/(dx) =1+y^2, y(0)=0` At x = 0.1 taking h=0.1 correct upto 3 decimal places.
Use Taylor series method to find a solution of `dy/dx=xy+1,y(0)=0` X=0.2 taking h=0.1 correct upto 4 decimal places.
Expand 2 ЁЭТЩ3 + 7 ЁЭТЩ2 + ЁЭТЩ – 6 in power of (ЁЭТЩ – 2) by using Taylors Theorem.