Advertisements
Advertisements
Question
Find the value of the integral `int_0^1 x^2/(1+x^3`๐ ๐ using Simpson’s (๐/๐)๐๐ rule.
Solution
Let I = `int_0^1 x^2/(1+x^3)dx`
a=0 , b=1
Dividing limits into 4 parts i.e n = 4
`thereforeh=(b-a)/n=1/4=0.25`
๐๐=0 | ๐๐=0.25 | ๐๐=0.50 | ๐๐=0.75 | ๐๐=1.0 |
๐๐=0 | ๐๐=0.06153 | ๐๐=0.2222 | ๐๐=0.39560 | ๐๐=๐.๐ |
Simpson’s (๐/๐)๐๐ rule :
`"I"=(3h)/8[X+2T+3R]` -------------(3)
๐ฟ=๐๐๐ ๐๐ ๐๐๐๐๐๐๐ ๐๐๐
๐๐๐๐๐๐=๐๐+๐๐=๐+๐.๐=๐.๐
๐ป=๐๐๐ ๐๐ ๐๐๐๐๐๐๐๐ ๐๐ ๐๐๐๐๐ ๐๐๐๐ ๐๐๐
๐๐๐๐๐๐= ๐๐=๐.๐๐๐๐๐
๐น= ๐๐๐ ๐๐ ๐๐๐๐๐๐๐๐๐ ๐๐๐
๐๐๐๐๐๐ = ๐๐+๐๐=๐.๐๐๐๐๐+๐.๐๐๐๐=๐.๐๐๐๐๐
`"I"=(3xx0.25)/8(0.5+2xx0.39560+3xx0.28373)`
∴ I = 0.2008