मराठी

Find the Value of the Integral ∫ 1 0 X 2 1 + X 3 𝒅𝒙 Using Simpson’S (𝟑/𝟖)𝒕𝒉 Rule. - Applied Mathematics 2

Advertisements
Advertisements

प्रश्न

Find the value of the integral `int_0^1 x^2/(1+x^3`𝒅𝒙 using Simpson’s (𝟑/𝟖)𝒕𝒉 rule.

बेरीज

उत्तर

Let I = `int_0^1 x^2/(1+x^3)dx`

a=0 , b=1
Dividing limits into 4 parts i.e n = 4
`thereforeh=(b-a)/n=1/4=0.25`

𝒙𝟎=0 𝒙𝟏=0.25 𝒙𝟐=0.50 𝒙𝟑=0.75 𝒙𝟒=1.0
𝒚𝟎=0 𝒚𝟏=0.06153 𝒚𝟐=0.2222 𝒚𝟑=0.39560 𝒚𝟒=𝟎.𝟓

Simpson’s (𝟑/𝟖)𝒕𝒉 rule :

`"I"=(3h)/8[X+2T+3R]`  -------------(3)

𝑿=𝒔𝒖𝒎 𝒐𝒇 𝒆𝒙𝒕𝒓𝒆𝒎𝒆 𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔=𝒚𝟎+𝒚𝟒=𝟎+𝟎.𝟓=𝟎.𝟓
𝑻=𝒔𝒖𝒎 𝒐𝒇 𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒆 𝒐𝒇 𝒕𝒉𝒓𝒆𝒆 𝒃𝒂𝒔𝒆 𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔= 𝒚𝟑=𝟎.𝟑𝟗𝟓𝟔𝟎
𝑹= 𝒔𝒖𝒎 𝒐𝒇 𝒓𝒆𝒎𝒂𝒊𝒏𝒊𝒏𝒈 𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔 = 𝒚𝟏+𝒚𝟐=𝟎.𝟎𝟔𝟏𝟓𝟑+𝟎.𝟐𝟐𝟐𝟐=𝟎.𝟐𝟖𝟑𝟕𝟑

`"I"=(3xx0.25)/8(0.5+2xx0.39560+3xx0.28373)`

∴ I = 0.2008

shaalaa.com
Numerical Integration‐ by Simpson’S 3/8th Rule
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2017-2018 (June) CBCGS
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Course
Use app×