मराठी

Compute the Value of ∫ π 2 0 √ Sin X + Cos X D X Using Simpson’S (3/8)Th Rule by Dividing into Six Subintervals. - Applied Mathematics 2

Advertisements
Advertisements

प्रश्न

Compute the value of `int_0^(pi/2) sqrt(sinx+cosx) dx` using Simpson’s (3/8)th rule by dividing into six Subintervals.

बेरीज

उत्तर

Let I = `int_0^(pi/2) sqrt(sinx+cosx) dx` 

Dividing limits into 6 subintervals . n=6

a = 0, `b=pi/2    thereforeh=(b-a)/n=pi/12`

`x_0=0` `x_1=pi/12` `x_2=(2pi)/12` `x_3=(3pi)/12` `x_4=(4pi)/12` `x_5=(5pi)/12` `x_6=(6pi)/12`
`y_0=1` `y_1=1.1067` `y_2=1.1688` `y_3=1.1892` `y_4=1.1688` `y_5=1.1067` `y_6=1`

Simpson’s (𝟑/𝟖)𝒕𝒉 rule :

`"I"=(3h)/8[X+2T+3R]`  -------------(1)

𝑿=𝒔𝒖𝒎 𝒐𝒇 𝒆𝒙𝒕𝒓𝒆𝒎𝒆 𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔=𝒚𝟎+𝒚𝟔=𝟎+𝟎.𝟓=𝟐
𝑻=𝒔𝒖𝒎 𝒐𝒇 𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒆 𝒐𝒇 𝒕𝒉𝒓𝒆𝒆 𝒃𝒂𝒔𝒆 𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔= 𝒚𝟑=𝟏.𝟏𝟖𝟗𝟐
𝑹= 𝒔𝒖𝒎 𝒐𝒇 𝒓𝒆𝒎𝒂𝒊𝒏𝒊𝒏𝒈 𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔 = 𝒚𝟏+𝒚𝟐+𝒚𝟒+𝒚𝟓=𝟒.𝟓𝟓𝟏

`therefore "I"=(3xxpi)/(8xx12)[2+2xx1.1892+3xx4.551]`

∴ I = 1.7702

shaalaa.com
Numerical Integration‐ by Simpson’S 3/8th Rule
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2017-2018 (December) CBCGS
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Course
Use app×