Advertisements
Advertisements
Question
Compute the value of `int_0^(pi/2) sqrt(sinx+cosx) dx` using Simpson’s (3/8)th rule by dividing into six Subintervals.
Sum
Solution
Let I = `int_0^(pi/2) sqrt(sinx+cosx) dx`
Dividing limits into 6 subintervals . n=6
a = 0, `b=pi/2 thereforeh=(b-a)/n=pi/12`
`x_0=0` | `x_1=pi/12` | `x_2=(2pi)/12` | `x_3=(3pi)/12` | `x_4=(4pi)/12` | `x_5=(5pi)/12` | `x_6=(6pi)/12` |
`y_0=1` | `y_1=1.1067` | `y_2=1.1688` | `y_3=1.1892` | `y_4=1.1688` | `y_5=1.1067` | `y_6=1` |
Simpson’s (𝟑/𝟖)𝒕𝒉 rule :
`"I"=(3h)/8[X+2T+3R]` -------------(1)
𝑿=𝒔𝒖𝒎 𝒐𝒇 𝒆𝒙𝒕𝒓𝒆𝒎𝒆 𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔=𝒚𝟎+𝒚𝟔=𝟎+𝟎.𝟓=𝟐
𝑻=𝒔𝒖𝒎 𝒐𝒇 𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒆 𝒐𝒇 𝒕𝒉𝒓𝒆𝒆 𝒃𝒂𝒔𝒆 𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔= 𝒚𝟑=𝟏.𝟏𝟖𝟗𝟐
𝑹= 𝒔𝒖𝒎 𝒐𝒇 𝒓𝒆𝒎𝒂𝒊𝒏𝒊𝒏𝒈 𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔 = 𝒚𝟏+𝒚𝟐+𝒚𝟒+𝒚𝟓=𝟒.𝟓𝟓𝟏
`therefore "I"=(3xxpi)/(8xx12)[2+2xx1.1892+3xx4.551]`
∴ I = 1.7702
shaalaa.com
Numerical Integration‐ by Simpson’S 3/8th Rule
Is there an error in this question or solution?