Advertisements
Advertisements
Question
Compute the value of `int_0^(pi/2) sqrt(sinx+cosx) dx` using Simpson’s (1/3)rd rule by dividing into six Subintervals.
Sum
Solution
Let I = `int_0^(pi/2) sqrt(sinx+cosx) dx`
Dividing limits into 6 subintervals . n=6
a = 0, `b=pi/2 thereforeh=(b-a)/n=pi/12`
`x_0=0` | `x_1=pi/12` | `x_2=(2pi)/12` | `x_3=(3pi)/12` | `x_4=(4pi)/12` | `x_5=(5pi)/12` | `x_6=(6pi)/12` |
`y_0=1` | `y_1=1.1067` | `y_2=1.1688` | `y_3=1.1892` | `y_4=1.1688` | `y_5=1.1067` | `y_6=1` |
Simpson’s (𝟏/𝟑)𝒓𝒅 rule :
`"I"=h/3[X+2E+40]` -----------------(1)
𝑿=𝒔𝒖𝒎 𝒐𝒇 𝒆𝒙𝒕𝒓𝒆𝒎𝒆 𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔=𝒚𝟎+𝒚𝟔=𝟏+𝟏=𝟐
𝑬=𝒔𝒖𝒎 𝒐𝒇 𝒆𝒗𝒆𝒏 𝒃𝒂𝒔𝒆 𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔= 𝒚𝟐+𝒚𝟒=𝟐.𝟑𝟑𝟕𝟔
𝑶=𝒔𝒖𝒎 𝒐𝒇 𝒐𝒅𝒅 𝒃𝒂𝒔𝒆 𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔= 𝒚𝟏+𝒚𝟑+𝒚𝟒=𝟑.𝟒𝟎𝟐𝟔
`"I"=pi/(3xx12)(2+2xx2.3376+4xx3.4026)`……………….(from 1)
I = 1.7693
shaalaa.com
Numerical Integration‐ by Simpson’S 1/3rd
Is there an error in this question or solution?