Advertisements
Advertisements
प्रश्न
Find the value of p for which the quadratic equation `(2p+1)x^2-(7p+2)x+(7p-3)=0` has real and equal roots.
उत्तर
The given equation is `(2p+1)x^2-(7p+2)x+(7p-3)=0`
This is of the form `ax^2+bx+c=0` where a=`2p+1, b=-(7p-2) and c=7 p-3`
∴ `D=b^2-4ac`
=`-[-7p+2]^2-4xx(2p+1)xx(7p-3)`
=`(49p^2+28p+4)-4 (14p^2+p-3)`
=`49p^2+28p+4-56p^2-4p+12`
=`-7p^2+24p+16`
The given equation will have real and equal roots if D = 0.
∴ `-7p^2+24p+16=0`
⇒ `7p^2-24p-16=0`
⇒ `7p^2-28p+4p-16=0`
⇒`7p(p-4)+4(p-4)=0`
⇒`(p-4) (7p+4)=0`
⇒` p-4=0 or 7p+4=0`
⇒ `p=4 or p=-4/7`
Hence, 4 and `-4/7` are the required values of p.
APPEARS IN
संबंधित प्रश्न
Write the discriminant of the following quadratic equations:
(x − 1) (2x − 1) = 0
`(2x-3) (3x+1)=0`
`x^2-6x+4=0`
`16x^2+2ax+1`
`x-1/x=3,x≠0`
`x^2+5x-(a^+a-6)=0`
`x^2-(2b-1)x+(b^2-b-20)=0`
Find the nature of roots of the following quadratic equations:
`x^2-x+2=0`
For what value of k are the roots of the quadratic equation `kx(x-2sqrt5)+10=0`real and equal.
Solve for x: \[\frac{16}{x} - 1 = \frac{15}{x + 1}, x \neq 0, - 1\]