Advertisements
Advertisements
प्रश्न
Find the values of k for which the roots are real and equal in each of the following equation:
(3k+1)x2 + 2(k + 1)x + k = 0
उत्तर
The given quadric equation is (3k+1)x2 + 2(k + 1)x + k = 0, and roots are real and equal
Then find the value of k.
Here, a = (3k + 1), b = 2(k + 1) and c = k
As we know that D = b2 - 4ac
Putting the value of a = (3k + 1), b = 2(k + 1) and c = k
= (2(k + 1))2 - 4 x (3k + 1) x (k)
= 4(k2 + 2k + 1) - 4k(3k + 1)
= 4k2 + 8k + 4 - 12k2 - 4k
= -8k2 + 4k + 4
The given equation will have real and equal roots, if D = 0
Thus,
-8k2 + 4k + 4 = 0
-4(2k2 - k - 1) = 0
2k2 - k - 1 = 0
Now factorizing of the above equation
2k2 - k - 1 = 0
2k2 - 2k + k - 1 = 0
2k(k - 1) + 1(k - 1) = 0
(k - 1)(2k + 1) = 0
So, either
k - 1 = 0
k = 1
Or
2k + 1 = 0
2k = -1
k = -1/2
Therefore, the value of k = 1, -1/2
APPEARS IN
संबंधित प्रश्न
If the quadratic equation px2 − 2√5px + 15 = 0 has two equal roots then find the value of p.
Determine the nature of the roots of the following quadratic equation:
2(a2 + b2)x2 + 2(a + b)x + 1 = 0
Find the values of k for which the roots are real and equal in each of the following equation:
kx(x - 2) + 6 = 0
In the following determine the set of values of k for which the given quadratic equation has real roots:
x2 - kx + 9 = 0
Find the value of the discriminant in the following quadratic equation :
10 x - `1/x` = 3
Find the value of the discriminant in the following quadratic equation:
x2 +2x-2=0
Solve the following quadratic equation using formula method only
`2x^2 - 2 . sqrt 6x + 3 = 0`
Solve the following quadratic equation using formula method only
`"x"^2 + 1/2 "x" = 3`
Find the discriminant of the following equations and hence find the nature of roots: 3x2 + 2x - 1 = 0
Choose the correct answer from the given four options :
If the equation 2x² – 6x + p = 0 has real and different roots, then the values of p are given by