Advertisements
Advertisements
प्रश्न
Find the values of k for which the roots are real and equal in each of the following equation:
kx2 + kx + 1 = -4x2 - x
उत्तर
The given quadric equation is kx2 + kx + 1 = -4x2 - x, and roots are real and equal
Then find the value of k.
Here,
kx2 + kx + 1 = -4x2 - x
4x2 + kx2 + kx + x + 1 = 0
(4 + k)x2 + (k + 1)x + 1 = 0
So,
a = (4 + k), b = (k + 1) and c = 1
As we know that D = b2 - 4ac
Putting the value of a = (4 + k), b = (k + 1) and c = 1
= (k + 1)2 - 4 x (4 + k) x (1)
= (k2 + 2k + 1) - 16 - 4k
= k2 - 2k - 15
The given equation will have real and equal roots, if D = 0
Thus,
k2 - 2k - 15 = 0
Now factorizing of the above equation
k2 - 2k - 15 = 0
k2 - 5k + 3k - 15 = 0
k(k - 5) + 3(k - 5) = 0
(k - 5)(k + 3) = 0
So, either
k - 5 = 0
k = 5
Or
k + 3 = 0
k = -3
Therefore, the value of k = 5, -3.
APPEARS IN
संबंधित प्रश्न
Without solving, examine the nature of roots of the equation x2 – 5x – 2 = 0
Find the values of k for which the roots are real and equal in each of the following equation:
(k + 1)x2 - 2(3k + 1)x + 8k + 1 = 0
Find the value of k for which the given equation has real roots:
kx2 - 6x - 2 = 0
Find the values of k for which each of the following quadratic equation has equal roots: 9x2 + kx + 1 = 0 Also, find the roots for those values of k in each case.
Mohan and Sohan solve an equation. In solving Mohan commits a mistake in constant term and finds the roots 8 and 2. Sohan commits a mistake in the coefficient of x. The correct roots are:
If the difference of the roots of the equation x2 – bx + c = 0 is 1, then:
If p, q and r are rational numbers and p ≠ q ≠ r, then roots of the equation (p2 – q2)x2 – (q2 – r2)x + (r2 – p2) = 0 are:
Does there exist a quadratic equation whose coefficients are all distinct irrationals but both the roots are rationals? Why?
Find the roots of the quadratic equation by using the quadratic formula in the following:
–3x2 + 5x + 12 = 0
Find the value of 'p' for which the quadratic equation p(x – 4)(x – 2) + (x –1)2 = 0 has real and equal roots.