Advertisements
Advertisements
प्रश्न
Find the values of x and y, if `|(3"x" - "y"),(5)| = |(7) , ("x + y")|`
उत्तर
`|(3"x" - "y"),(5)|_(2 xx 1) = |(7) , ("x + y")|_(2 xx 1)`
3x - y = 7 -(1)
x + y = 5 -(2)
⇒ x = 5 - y
Putting the value of x in (1)
3(5 - y) - y = 7
⇒ 15 - 3y - y = 7
⇒ - 4 y = -8
⇒ y = 2
from (2)
x + 2 = 5
⇒ x = 3
APPEARS IN
संबंधित प्रश्न
State, whether the following statement is true or false. If false, give a reason.
Transpose of a 2 × 1 matrix is a 2 × 1 matrix.
Find x and y from the given equations:
`[(5, 2),(-1, y - 1)] - [(1, x - 1),(2, -3)] = [(4, 7),(-3, 2)]`
State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.
(B . C) . A = B . (C . A)
State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.
A . (B – C) = A . B – A . C
If M =`|(8,3),(9,7),(4,3)|` and N = `|(4,7),(5,3),(10,1)|` find M - N
If P= (8,5),(7,2) find : P + Pt
If A = `|(3,-2),(-1 , 4)|` , B = `|(2"a"),(1)|` , C = `|(-4),(5)|` , D = `|(2),("b")|` and AB + 2C = 4D then find the values of a and b.
Let A = `|(3 , 2),(0 ,5)|` and B = `|(1 ,0),(1 ,2)|` , find (i) (A + B)(A - B) (ii) A2 - B2 . Is (i) equal to (ii) ?
Find the inverse of the matrix `[ (1, 2, 3), (1, 1, 5), (2, 4, 7)]` by using the adjoint method.
`
If A = `[(1,0,0),(2,1,0),(3,3,1)]` then find A-1 by using elementary transformation .