हिंदी

Find the Vertex, Focus, Axis, Directrix and Latus-rectum of the Following Parabola Y2 + 4x + 4y − 3 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 y2 + 4x + 4y − 3 = 0 

उत्तर

Given:
y2 + 4y + 4x −3 = 0 

\[\Rightarrow \left( y + 2 \right)^2 - 4 + 4x - 3 = 0\]
\[ \Rightarrow \left( y + 2 \right)^2 = - 4\left( x - \frac{7}{4} \right)\] 

Let \[Y = y + 2\] 

\[X = x - \frac{7}{4}\] 

Then, we have: \[Y^2 = - 4X\] 
Comparing the given equation with \[Y^2 = - 4aX\] \[4a = 4 \Rightarrow a = 1\] 
∴ Vertex = (X = 0, = 0) = \[\left( x = \frac{7}{4}, y = - 2 \right)\] 
Focus = (−a= 0) = \[\left( x - \frac{7}{4} = - 1, y + 2 = 0 \right) = \left( x = \frac{3}{4}, y = - 2 \right)\] 
Equation of the directrix:
X = a
i.e.\[x - \frac{7}{4} = 1 \Rightarrow x = \frac{11}{4}\] 
Axis = Y = 0
i.e. \[y + 2 = 0 \Rightarrow y = - 2\] 
Length of the latus rectum = 4a = 4 units
 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 25: Parabola - Exercise 25.1 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 25 Parabola
Exercise 25.1 | Q 4.5 | पृष्ठ २४

संबंधित प्रश्न

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/36 + y^2/16 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/4 + y^2/25 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/16 + y^2/9 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

16x2 + y2 = 16


An arch is in the form of a semi-ellipse. It is 8 m wide and 2 m high at the centre. Find the height of the arch at a point 1.5 m from one end.


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

4x2 + y = 0 

 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabolas 

y2 − 4y − 3x + 1 = 0 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola

y2 − 4y + 4x = 0 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 y2 = 5x − 4y − 9 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

x2 + y = 6x − 14


For the parabola y2 = 4px find the extremities of a double ordinate of length 8 p. Prove that the lines from the vertex to its extremities are at right angles. 


Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line-segment makes an angle θ to the x-axis.  


Write the axis of symmetry of the parabola y2 = x


Write the distance between the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0. 


If the coordinates of the vertex and focus of a parabola are (−1, 1) and (2, 3) respectively, then write the equation of its directrix. 


The directrix of the parabola x2 − 4x − 8y + 12 = 0 is


The equation of the parabola with focus (0, 0) and directrix x + y = 4 is 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

x2 + 2y2 − 2x + 12y + 10 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

4x2 + y2 − 8x + 2y + 1 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:

x2 + 4y2 − 2x = 0 


Find the equation of an ellipse whose foci are at (± 3, 0) and which passes through (4, 1).


If the lengths of semi-major and semi-minor axes of an ellipse are 2 and \[\sqrt{3}\] and their corresponding equations are y − 5 = 0 and x + 3 = 0, then write the equation of the ellipse. 


Write the eccentricity of the ellipse 9x2 + 5y2 − 18x − 2y − 16 = 0. 


If a latus rectum of an ellipse subtends a right angle at the centre of the ellipse, then write the eccentricity of the ellipse. 


Given the ellipse with equation 9x2 + 25y2 = 225, find the major and minor axes, eccentricity, foci and vertices.


The equation of the circle in the first quadrant touching each coordinate axis at a distance of one unit from the origin is ______.


The equation of the circle having centre (1, –2) and passing through the point of intersection of the lines 3x + y = 14 and 2x + 5y = 18 is ______.


The equation of the circle which passes through the point (4, 5) and has its centre at (2, 2) is ______.


Find the distance between the directrices of the ellipse `x^2/36 + y^2/20` = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×