हिंदी

P Find the Centre, the Lengths of the Axes, Eccentricity, Foci of the Following Ellipse: X2 + 4y2 − 2x = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:

x2 + 4y2 − 2x = 0 

उत्तर

\[ x^2 - 2x + 4 y^2 = 0\]
\[ \Rightarrow \left( x^2 - 2x \right) + 4\left( y^2 \right) = 0\]
\[ \Rightarrow \left( x^2 - 2x + 1 \right) + 4\left( y^2 \right) = 1\]
\[ \Rightarrow \left( x - 1 \right)^2 + 4 \left( y \right)^2 = 1\]
\[ \Rightarrow \frac{\left( x - 1 \right)^2}{1} + \frac{\left( y \right)^2}{\frac{1}{4}} = 9\]
\[\text{ Centre }=\left( 1, 0 \right)\]
\[\text{ Major axis }=2a\]
\[ = 2 \times 1\]
\[ = 2\]
\[\text{ Minor axis }=2b\]
\[ = 2 \times \frac{1}{2}\]
\[ = 1\]
\[e = \sqrt{1 - \frac{b^2}{a^2}}\]
\[ \Rightarrow e = \sqrt{1 - \frac{\frac{1}{4}}{1}}\]
\[ \Rightarrow e = \frac{\sqrt{3}}{2}\]
\[\text{ Foci } = \left( x \pm ae, y \right)\]
\[ = \left( 1 \pm \frac{3}{\sqrt{2}}, 0 \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 26: Ellipse - Exercise 26.1 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 26 Ellipse
Exercise 26.1 | Q 10.6 | पृष्ठ २३

संबंधित प्रश्न

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/36 + y^2/16 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/16 + y^2/9 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/25 + y^2/100 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

36x2 + 4y2 = 144


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

4x2 + 9y2 = 36


An arch is in the form of a semi-ellipse. It is 8 m wide and 2 m high at the centre. Find the height of the arch at a point 1.5 m from one end.


A rod of length 12 cm moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with the x-axis.


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola:

y2 = 8x 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabolas 

y2 − 4y − 3x + 1 = 0 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola

y2 − 4y + 4x = 0 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 y2 + 4x + 4y − 3 = 0 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola

y2 = 8x + 8


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola

y2 = 8x + 8y

 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 y2 = 5x − 4y − 9 


For the parabola y2 = 4px find the extremities of a double ordinate of length 8 p. Prove that the lines from the vertex to its extremities are at right angles. 


Write the axis of symmetry of the parabola y2 = x


Write the distance between the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0. 


Write the coordinates of the vertex of the parabola whose focus is at (−2, 1) and directrix is the line x + y − 3 = 0.

 


If the coordinates of the vertex and focus of a parabola are (−1, 1) and (2, 3) respectively, then write the equation of its directrix. 


In the parabola y2 = 4ax, the length of the chord passing through the vertex and inclined to the axis at π/4 is


The directrix of the parabola x2 − 4x − 8y + 12 = 0 is


The equation of the parabola with focus (0, 0) and directrix x + y = 4 is 


The vertex of the parabola (y − 2)2 = 16 (x − 1) is 


Find the equation of the set of all points whose distances from (0, 4) are\[\frac{2}{3}\] of their distances from the line y = 9. 

 

Write the eccentricity of the ellipse 9x2 + 5y2 − 18x − 2y − 16 = 0. 


If S and S' are two foci of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and B is an end of the minor axis such that ∆BSS' is equilateral, then write the eccentricity of the ellipse.


If the minor axis of an ellipse subtends an equilateral triangle with vertex at one end of major axis, then write the eccentricity of the ellipse. 


The equation of the circle having centre (1, –2) and passing through the point of intersection of the lines 3x + y = 14 and 2x + 5y = 18 is ______.


The equation of the ellipse whose centre is at the origin and the x-axis, the major axis, which passes through the points (–3, 1) and (2, –2) is ______.


The equation of the circle which passes through the point (4, 5) and has its centre at (2, 2) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×