हिंदी

If the Minor Axis of an Ellipse Subtends an Equilateral Triangle with Vertex at One End of Major Axis, Then Write the Eccentricity of the Ellipse. - Mathematics

Advertisements
Advertisements

प्रश्न

If the minor axis of an ellipse subtends an equilateral triangle with vertex at one end of major axis, then write the eccentricity of the ellipse. 

उत्तर

\[\text{ According to the question, the minor axis of the ellipse subtends an equilateral triangle with the vertex at one end of the major axis }.\]
\[AB=\sqrt{a^2 + b^2}\]
\[\text{ We know that ABC is an equilateral triangle } . \]
\[ \therefore AB = BB'\]
\[ \Rightarrow \sqrt{a^2 + b^2} = 2b\]
\[\text{ On squaring both sides, we have }:\]
\[ a^2 + b^2 = 4 b^2 \]
\[ \Rightarrow a^2 = 3 b^2 \]
\[\text{ Now }, e = \sqrt{1 - \frac{b^2}{a^2}}\]
\[ \Rightarrow e = \sqrt{1 - \frac{b^2}{3 b^2}}\]
\[ \Rightarrow e = \sqrt{1 - \frac{1}{3}}\]
\[ \Rightarrow e = \sqrt{\frac{2}{3}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 26: Ellipse - Exercise 26.2 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 26 Ellipse
Exercise 26.2 | Q 8 | पृष्ठ २७

संबंधित प्रश्न

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/4 + y^2/25 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/49 + y^2/36 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

36x2 + 4y2 = 144


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola:

y2 = 8x 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

4x2 + y = 0 

 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabolas 

y2 − 4y − 3x + 1 = 0 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola

y2 = 8x + 8y

 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 4 (y − 1)2 = − 7 (x − 3) 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

x2 + y = 6x − 14


For the parabola y2 = 4px find the extremities of a double ordinate of length 8 p. Prove that the lines from the vertex to its extremities are at right angles. 


Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line-segment makes an angle θ to the x-axis.  


Write the axis of symmetry of the parabola y2 = x


Write the coordinates of the vertex of the parabola whose focus is at (−2, 1) and directrix is the line x + y − 3 = 0.

 


The directrix of the parabola x2 − 4x − 8y + 12 = 0 is


The vertex of the parabola (y − 2)2 = 16 (x − 1) is 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

x2 + 2y2 − 2x + 12y + 10 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

 x2 + 4y2 − 4x + 24y + 31 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

3x2 + 4y2 − 12x − 8y + 4 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:

x2 + 4y2 − 2x = 0 


A rod of length 12 m moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with x-axis. 


Find the equation of the set of all points whose distances from (0, 4) are\[\frac{2}{3}\] of their distances from the line y = 9. 

 

Write the eccentricity of the ellipse 9x2 + 5y2 − 18x − 2y − 16 = 0. 


PSQ is a focal chord of the ellipse 4x2 + 9y2 = 36 such that SP = 4. If S' is the another focus, write the value of S'Q


If S and S' are two foci of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and B is an end of the minor axis such that ∆BSS' is equilateral, then write the eccentricity of the ellipse.


The equation of the circle in the first quadrant touching each coordinate axis at a distance of one unit from the origin is ______.


The equation of the circle having centre (1, –2) and passing through the point of intersection of the lines 3x + y = 14 and 2x + 5y = 18 is ______.


The equation of the ellipse whose centre is at the origin and the x-axis, the major axis, which passes through the points (–3, 1) and (2, –2) is ______.


The equation of the circle which passes through the point (4, 5) and has its centre at (2, 2) is ______.


If the lines 3x – 4y + 4 = 0 and 6x – 8y – 7 = 0 are tangents to a circle, then find the radius of the circle.


Find the equation of a circle which touches both the axes and the line 3x – 4y + 8 = 0 and lies in the third quadrant.


The shortest distance from the point (2, –7) to the circle x2 + y2 – 14x – 10y – 151 = 0 is equal to 5.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×