Advertisements
Advertisements
प्रश्न
The equation of the ellipse whose centre is at the origin and the x-axis, the major axis, which passes through the points (–3, 1) and (2, –2) is ______.
विकल्प
5x2 + 3y2 = 32
3x2 + 5y2 = 32
5x2 – 3y2 = 32
3x2 + 5y2 + 32 = 0
उत्तर
The equation of the ellipse whose centre is at the origin and the x-axis, the major axis, which passes through the points (–3, 1) and (2, –2) is 3x2 + 5y2 = 32.
Explanation:
Let `x^2/a^2 + y^2/b^2` = 1 be the equation of the ellipse.
Then according to the given conditions
We have `9/a^2 + 1/b^2` = 1 and `1/a^2 + 1/b^2 - 1/4`
Which gives `a^2 = 32/3` and `b^2 = 32/5`.
Hence, required equation of ellipse is 3x2 + 5y2 = 32.
APPEARS IN
संबंधित प्रश्न
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
`x^2/36 + y^2/16 = 1`
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
`x^2/4 + y^2/25 = 1`
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
`x^2/25 + y^2/100 = 1`
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
`x^2/49 + y^2/36 = 1`
A rod of length 12 cm moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with the x-axis.
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
x2 + y = 6x − 14
For the parabola y2 = 4px find the extremities of a double ordinate of length 8 p. Prove that the lines from the vertex to its extremities are at right angles.
Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line-segment makes an angle θ to the x-axis.
Write the coordinates of the vertex of the parabola whose focus is at (−2, 1) and directrix is the line x + y − 3 = 0.
The directrix of the parabola x2 − 4x − 8y + 12 = 0 is
The vertex of the parabola (y − 2)2 = 16 (x − 1) is
Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
x2 + 2y2 − 2x + 12y + 10 = 0
Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
x2 + 4y2 − 4x + 24y + 31 = 0
Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
4x2 + y2 − 8x + 2y + 1 = 0
Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
3x2 + 4y2 − 12x − 8y + 4 = 0
Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
x2 + 4y2 − 2x = 0
Find the equation of an ellipse whose foci are at (± 3, 0) and which passes through (4, 1).
If the lengths of semi-major and semi-minor axes of an ellipse are 2 and \[\sqrt{3}\] and their corresponding equations are y − 5 = 0 and x + 3 = 0, then write the equation of the ellipse.
Write the eccentricity of the ellipse 9x2 + 5y2 − 18x − 2y − 16 = 0.
PSQ is a focal chord of the ellipse 4x2 + 9y2 = 36 such that SP = 4. If S' is the another focus, write the value of S'Q.
Find the equation of the ellipse with foci at (± 5, 0) and x = `36/5` as one of the directrices.
The equation of the circle in the first quadrant touching each coordinate axis at a distance of one unit from the origin is ______.
The equation of the circle which passes through the point (4, 5) and has its centre at (2, 2) is ______.
If the lines 3x – 4y + 4 = 0 and 6x – 8y – 7 = 0 are tangents to a circle, then find the radius of the circle.
Find the equation of a circle which touches both the axes and the line 3x – 4y + 8 = 0 and lies in the third quadrant.