हिंदी

Find the vertex, focus, axis, directrix and latus-rectum of the following parabola x2 + y = 6x − 14 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

x2 + y = 6x − 14

उत्तर

Given:
x2 = 6xy−14 

\[\Rightarrow \left( x - 3 \right)^2 = - y - 14 + 9\]
\[ \Rightarrow \left( x - 3 \right)^2 = - y - 5 = - \left( y + 5 \right)\] 

Let\[Y = y + 5\] \[X = x - 3\] 

Then, we have:

\[X^2 = - Y\]

Comparing the given equation with\[X^2 = - 4aY\] 

\[4a = 1 \Rightarrow a = \frac{1}{4}\] 

∴ Vertex = (= 0, = 0) = \[\left( x = 3, y = - 5 \right)\] 

Focus = (= 0, = −a) = \[\left( x - 3 = 0, y + 5 = \frac{- 1}{4} \right) = \left( x = 3, y = \frac{- 21}{4} \right)\]

Equation of the directrix:
a
i.e.\[y + 5 = \frac{1}{4} \Rightarrow y = \frac{- 19}{4}\] 

Axis = X = 0
i.e \[x - 3 = 0 \Rightarrow x = 3\]

Length of the latus rectum = 4a = 1 units

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 25: Parabola - Exercise 25.1 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 25 Parabola
Exercise 25.1 | Q 4.9 | पृष्ठ २४

संबंधित प्रश्न

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/36 + y^2/16 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/16 + y^2/9 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/100 + y^2/400 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

16x2 + y2 = 16


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

4x2 + 9y2 = 36


A rod of length 12 cm moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with the x-axis.


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola:

y2 = 8x 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabolas 

y2 − 4y − 3x + 1 = 0 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola

y2 − 4y + 4x = 0 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola

y2 = 8x + 8y

 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 4 (y − 1)2 = − 7 (x − 3) 


For the parabola y2 = 4px find the extremities of a double ordinate of length 8 p. Prove that the lines from the vertex to its extremities are at right angles. 


Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line-segment makes an angle θ to the x-axis.  


Write the axis of symmetry of the parabola y2 = x


Write the distance between the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0. 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

4x2 + y2 − 8x + 2y + 1 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:

x2 + 4y2 − 2x = 0 


Find the equation of an ellipse whose foci are at (± 3, 0) and which passes through (4, 1).


Write the eccentricity of the ellipse 9x2 + 5y2 − 18x − 2y − 16 = 0. 


If S and S' are two foci of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and B is an end of the minor axis such that ∆BSS' is equilateral, then write the eccentricity of the ellipse.


Find the equation of the ellipse with foci at (± 5, 0) and x = `36/5` as one of the directrices.


The equation of the circle in the first quadrant touching each coordinate axis at a distance of one unit from the origin is ______.


The equation of the circle having centre (1, –2) and passing through the point of intersection of the lines 3x + y = 14 and 2x + 5y = 18 is ______.


The equation of the circle which passes through the point (4, 5) and has its centre at (2, 2) is ______.


Find the distance between the directrices of the ellipse `x^2/36 + y^2/20` = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×