Advertisements
Advertisements
प्रश्न
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
x2 + y = 6x − 14
उत्तर
Given:
x2 = 6x−y−14
\[\Rightarrow \left( x - 3 \right)^2 = - y - 14 + 9\]
\[ \Rightarrow \left( x - 3 \right)^2 = - y - 5 = - \left( y + 5 \right)\]
Let\[Y = y + 5\] \[X = x - 3\]
Then, we have:
\[X^2 = - Y\]
Comparing the given equation with\[X^2 = - 4aY\]
\[4a = 1 \Rightarrow a = \frac{1}{4}\]
∴ Vertex = (X = 0, Y = 0) = \[\left( x = 3, y = - 5 \right)\]
Focus = (X = 0, Y = −a) = \[\left( x - 3 = 0, y + 5 = \frac{- 1}{4} \right) = \left( x = 3, y = \frac{- 21}{4} \right)\]
Equation of the directrix:
Y = a
i.e.\[y + 5 = \frac{1}{4} \Rightarrow y = \frac{- 19}{4}\]
Axis = X = 0
i.e \[x - 3 = 0 \Rightarrow x = 3\]
Length of the latus rectum = 4a = 1 units
APPEARS IN
संबंधित प्रश्न
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
`x^2/49 + y^2/36 = 1`
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
16x2 + y2 = 16
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
4x2 + 9y2 = 36
An arch is in the form of a semi-ellipse. It is 8 m wide and 2 m high at the centre. Find the height of the arch at a point 1.5 m from one end.
A rod of length 12 cm moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with the x-axis.
Find the vertex, focus, axis, directrix and latus-rectum of the following parabolas
y2 − 4y − 3x + 1 = 0
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
y2 − 4y + 4x = 0
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
y2 + 4x + 4y − 3 = 0
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
4 (y − 1)2 = − 7 (x − 3)
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
y2 = 5x − 4y − 9
For the parabola y2 = 4px find the extremities of a double ordinate of length 8 p. Prove that the lines from the vertex to its extremities are at right angles.
Write the distance between the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0.
If the coordinates of the vertex and focus of a parabola are (−1, 1) and (2, 3) respectively, then write the equation of its directrix.
Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
x2 + 4y2 − 4x + 24y + 31 = 0
Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
3x2 + 4y2 − 12x − 8y + 4 = 0
Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
4x2 + 16y2 − 24x − 32y − 12 = 0
A rod of length 12 m moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with x-axis.
PSQ is a focal chord of the ellipse 4x2 + 9y2 = 36 such that SP = 4. If S' is the another focus, write the value of S'Q.
If S and S' are two foci of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and B is an end of the minor axis such that ∆BSS' is equilateral, then write the eccentricity of the ellipse.
Given the ellipse with equation 9x2 + 25y2 = 225, find the major and minor axes, eccentricity, foci and vertices.
Find the equation of the ellipse with foci at (± 5, 0) and x = `36/5` as one of the directrices.
The equation of the circle having centre (1, –2) and passing through the point of intersection of the lines 3x + y = 14 and 2x + 5y = 18 is ______.
The equation of the ellipse whose centre is at the origin and the x-axis, the major axis, which passes through the points (–3, 1) and (2, –2) is ______.
If the lines 3x – 4y + 4 = 0 and 6x – 8y – 7 = 0 are tangents to a circle, then find the radius of the circle.
Find the equation of a circle which touches both the axes and the line 3x – 4y + 8 = 0 and lies in the third quadrant.
Find the distance between the directrices of the ellipse `x^2/36 + y^2/20` = 1
The shortest distance from the point (2, –7) to the circle x2 + y2 – 14x – 10y – 151 = 0 is equal to 5.