English

P Find the Centre, the Lengths of the Axes, Eccentricity, Foci of the Following Ellipse: X2 + 4y2 − 2x = 0 - Mathematics

Advertisements
Advertisements

Question

Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:

x2 + 4y2 − 2x = 0 

Solution

\[ x^2 - 2x + 4 y^2 = 0\]
\[ \Rightarrow \left( x^2 - 2x \right) + 4\left( y^2 \right) = 0\]
\[ \Rightarrow \left( x^2 - 2x + 1 \right) + 4\left( y^2 \right) = 1\]
\[ \Rightarrow \left( x - 1 \right)^2 + 4 \left( y \right)^2 = 1\]
\[ \Rightarrow \frac{\left( x - 1 \right)^2}{1} + \frac{\left( y \right)^2}{\frac{1}{4}} = 9\]
\[\text{ Centre }=\left( 1, 0 \right)\]
\[\text{ Major axis }=2a\]
\[ = 2 \times 1\]
\[ = 2\]
\[\text{ Minor axis }=2b\]
\[ = 2 \times \frac{1}{2}\]
\[ = 1\]
\[e = \sqrt{1 - \frac{b^2}{a^2}}\]
\[ \Rightarrow e = \sqrt{1 - \frac{\frac{1}{4}}{1}}\]
\[ \Rightarrow e = \frac{\sqrt{3}}{2}\]
\[\text{ Foci } = \left( x \pm ae, y \right)\]
\[ = \left( 1 \pm \frac{3}{\sqrt{2}}, 0 \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 26: Ellipse - Exercise 26.1 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 26 Ellipse
Exercise 26.1 | Q 10.6 | Page 23

RELATED QUESTIONS

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/36 + y^2/16 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/4 + y^2/25 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/16 + y^2/9 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/25 + y^2/100 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

36x2 + 4y2 = 144


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

4x2 + 9y2 = 36


An arch is in the form of a semi-ellipse. It is 8 m wide and 2 m high at the centre. Find the height of the arch at a point 1.5 m from one end.


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola:

y2 = 8x 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

4x2 + y = 0 

 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola

y2 − 4y + 4x = 0 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 4 (y − 1)2 = − 7 (x − 3) 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 y2 = 5x − 4y − 9 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

x2 + y = 6x − 14


For the parabola y2 = 4px find the extremities of a double ordinate of length 8 p. Prove that the lines from the vertex to its extremities are at right angles. 


Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line-segment makes an angle θ to the x-axis.  


Write the distance between the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0. 


Write the coordinates of the vertex of the parabola whose focus is at (−2, 1) and directrix is the line x + y − 3 = 0.

 


In the parabola y2 = 4ax, the length of the chord passing through the vertex and inclined to the axis at π/4 is


The directrix of the parabola x2 − 4x − 8y + 12 = 0 is


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

x2 + 2y2 − 2x + 12y + 10 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

 x2 + 4y2 − 4x + 24y + 31 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

4x2 + 16y2 − 24x − 32y − 12 = 0 


PSQ is a focal chord of the ellipse 4x2 + 9y2 = 36 such that SP = 4. If S' is the another focus, write the value of S'Q


If a latus rectum of an ellipse subtends a right angle at the centre of the ellipse, then write the eccentricity of the ellipse. 


Given the ellipse with equation 9x2 + 25y2 = 225, find the major and minor axes, eccentricity, foci and vertices.


The equation of the circle in the first quadrant touching each coordinate axis at a distance of one unit from the origin is ______.


The equation of the circle having centre (1, –2) and passing through the point of intersection of the lines 3x + y = 14 and 2x + 5y = 18 is ______.


The equation of the ellipse whose centre is at the origin and the x-axis, the major axis, which passes through the points (–3, 1) and (2, –2) is ______.


The equation of the circle which passes through the point (4, 5) and has its centre at (2, 2) is ______.


Find the equation of a circle which touches both the axes and the line 3x – 4y + 8 = 0 and lies in the third quadrant.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×