English

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. x225+y2100=1 - Mathematics

Advertisements
Advertisements

Question

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/25 + y^2/100 = 1`

Sum

Solution

Equation of ellipse `x^2/25 + y^2/100 = 1`

∴ a2 = 100, b2 = 25

∴ a = 10, b = 5

∴ c2 = a2 – b2 = 100 – 25 = 75

∴ c = `5sqrt3`

Coordinates of foci are (0, ± c) or (0, ± `5sqrt3`)

Coordinates of vertices are (0, ±a) or (0, ±10)

Length of major axis = 2a = 2 × 10 = 20

Length of minor axis = 2b = 2 × 5 = 10

Eccentricity = `e =c/a = (5sqrt3)/10 = sqrt3/2`

Length of latus rectum = `(2"b")^2/"a"` 

= `(2 xx 25)/10`

= 5

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Conic Sections - Exercise 11.3 [Page 255]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 11 Conic Sections
Exercise 11.3 | Q 4 | Page 255

RELATED QUESTIONS

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

16x2 + y2 = 16


A rod of length 12 cm moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with the x-axis.


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola:

y2 = 8x 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola

y2 − 4y + 4x = 0 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 y2 + 4x + 4y − 3 = 0 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola

y2 = 8x + 8y

 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 4 (y − 1)2 = − 7 (x − 3) 


For the parabola y2 = 4px find the extremities of a double ordinate of length 8 p. Prove that the lines from the vertex to its extremities are at right angles. 


Write the length of the chord of the parabola y2 = 4ax which passes through the vertex and is inclined to the axis at \[\frac{\pi}{4}\] 


Write the coordinates of the vertex of the parabola whose focus is at (−2, 1) and directrix is the line x + y − 3 = 0.

 


In the parabola y2 = 4ax, the length of the chord passing through the vertex and inclined to the axis at π/4 is


The equation of the parabola with focus (0, 0) and directrix x + y = 4 is 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

x2 + 2y2 − 2x + 12y + 10 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

4x2 + y2 − 8x + 2y + 1 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

3x2 + 4y2 − 12x − 8y + 4 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:

x2 + 4y2 − 2x = 0 


A rod of length 12 m moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with x-axis. 


Find the equation of the set of all points whose distances from (0, 4) are\[\frac{2}{3}\] of their distances from the line y = 9. 

 

If the lengths of semi-major and semi-minor axes of an ellipse are 2 and \[\sqrt{3}\] and their corresponding equations are y − 5 = 0 and x + 3 = 0, then write the equation of the ellipse. 


Write the eccentricity of the ellipse 9x2 + 5y2 − 18x − 2y − 16 = 0. 


PSQ is a focal chord of the ellipse 4x2 + 9y2 = 36 such that SP = 4. If S' is the another focus, write the value of S'Q


If the minor axis of an ellipse subtends an equilateral triangle with vertex at one end of major axis, then write the eccentricity of the ellipse. 


If a latus rectum of an ellipse subtends a right angle at the centre of the ellipse, then write the eccentricity of the ellipse. 


Find the equation of the ellipse with foci at (± 5, 0) and x = `36/5` as one of the directrices.


The equation of the circle in the first quadrant touching each coordinate axis at a distance of one unit from the origin is ______.


The equation of the circle having centre (1, –2) and passing through the point of intersection of the lines 3x + y = 14 and 2x + 5y = 18 is ______.


The equation of the circle which passes through the point (4, 5) and has its centre at (2, 2) is ______.


Find the equation of a circle which touches both the axes and the line 3x – 4y + 8 = 0 and lies in the third quadrant.


The shortest distance from the point (2, –7) to the circle x2 + y2 – 14x – 10y – 151 = 0 is equal to 5.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×