English

Write the Length of the Chord of the Parabola Y2 = 4ax Which Passes Through the Vertex and is Inclined to the Axis at π 4 - Mathematics

Advertisements
Advertisements

Question

Write the length of the chord of the parabola y2 = 4ax which passes through the vertex and is inclined to the axis at \[\frac{\pi}{4}\] 

Solution

Let OP be the chord.
Let the coordinates of be  \[\left( x_1 , y_1 \right)\] 

From the figure, we have: 

\[O P^2 = {x_1}^2 + {y_1}^2\] 

And, \[\tan\frac{\pi}{4} = \frac{y_1}{x_1}\] 

\[\Rightarrow x_1 = y_1\]                         (2) 

Also,  \[\left( x_1 , y_1 \right)\] lies on the parabola. 

∴ \[{y_1}^2 = 4a x_1                              (3)

Using (2) and (3), we get: 

\[{x_1}^2 = 4a x_1 \Rightarrow x_1 = 4a\]           ...(4) 

∴ From (4), (1) and (2), we have: 

\[O P^2 = \left( 4a \right)^2 + \left( 4a \right)^2 = 32 a^2 \]
\[ \Rightarrow OP = 4\sqrt{2}a\] 

Therefore, the length of the chord is \[4\sqrt{2}a \text{ units }\] 

 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 25: Parabola - Exercise 25.2 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 25 Parabola
Exercise 25.2 | Q 5 | Page 28

RELATED QUESTIONS

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/4 + y^2/25 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

36x2 + 4y2 = 144


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

4x2 + 9y2 = 36


An arch is in the form of a semi-ellipse. It is 8 m wide and 2 m high at the centre. Find the height of the arch at a point 1.5 m from one end.


A rod of length 12 cm moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with the x-axis.


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 y2 + 4x + 4y − 3 = 0 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola

y2 = 8x + 8y

 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 4 (y − 1)2 = − 7 (x − 3) 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 y2 = 5x − 4y − 9 


Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line-segment makes an angle θ to the x-axis.  


Write the axis of symmetry of the parabola y2 = x


Write the distance between the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0. 


If the coordinates of the vertex and focus of a parabola are (−1, 1) and (2, 3) respectively, then write the equation of its directrix. 


The directrix of the parabola x2 − 4x − 8y + 12 = 0 is


The vertex of the parabola (y − 2)2 = 16 (x − 1) is 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

x2 + 2y2 − 2x + 12y + 10 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

3x2 + 4y2 − 12x − 8y + 4 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

4x2 + 16y2 − 24x − 32y − 12 = 0 


Find the equation of an ellipse whose foci are at (± 3, 0) and which passes through (4, 1).


A rod of length 12 m moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with x-axis. 


Find the equation of the set of all points whose distances from (0, 4) are\[\frac{2}{3}\] of their distances from the line y = 9. 

 

PSQ is a focal chord of the ellipse 4x2 + 9y2 = 36 such that SP = 4. If S' is the another focus, write the value of S'Q


If a latus rectum of an ellipse subtends a right angle at the centre of the ellipse, then write the eccentricity of the ellipse. 


Given the ellipse with equation 9x2 + 25y2 = 225, find the major and minor axes, eccentricity, foci and vertices.


Find the equation of the ellipse with foci at (± 5, 0) and x = `36/5` as one of the directrices.


The equation of the circle in the first quadrant touching each coordinate axis at a distance of one unit from the origin is ______.


The equation of the ellipse whose centre is at the origin and the x-axis, the major axis, which passes through the points (–3, 1) and (2, –2) is ______.


If the lines 3x – 4y + 4 = 0 and 6x – 8y – 7 = 0 are tangents to a circle, then find the radius of the circle.


The shortest distance from the point (2, –7) to the circle x2 + y2 – 14x – 10y – 151 = 0 is equal to 5.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×