English

P Find the Vertex, Focus, Axis, Directrix and Latus-rectum of the Following Parabola 4 (Y − 1)2 = − 7 (X − 3) - Mathematics

Advertisements
Advertisements

Question

Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 4 (y − 1)2 = − 7 (x − 3) 

Solution

 Given: 

4(y − 1)2 = − 7 (x − 3) 

\[\Rightarrow \left( y - 1 \right)^2 = \frac{- 7}{4}\left( x - 3 \right)\] 

Let \[Y = y - 1\] 

\[X = x - 3\] 

Then, we have: 

\[Y^2 = \frac{- 7}{4}X\] 

Comparing the given equation with \[Y^2 = - 4aX\] 

\[4a = \frac{7}{4} \Rightarrow a = \frac{7}{16}\] 

∴ Vertex = (X = 0, = 0) = \[\left( x = 3, y = 1 \right)\] 

Focus = (X = −a, Y = 0) = \[\left( x - 3 = \frac{- 7}{16}, y - 1 = 0 \right) = \left( x = \frac{41}{16}, y = 1 \right)\] 

Equation of the directrix: 

X = a
i.e. \[x - 3 = \frac{7}{16} \Rightarrow x = \frac{55}{16}\] 

Axis = Y = 0
i.e. \[y - 1 = 0 \Rightarrow y = 1\] 

Length of the latus rectum = 4a = \[\frac{7}{4}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 25: Parabola - Exercise 25.1 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 25 Parabola
Exercise 25.1 | Q 4.7 | Page 24

RELATED QUESTIONS

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/36 + y^2/16 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/4 + y^2/25 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/49 + y^2/36 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

36x2 + 4y2 = 144


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

16x2 + y2 = 16


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

4x2 + 9y2 = 36


A rod of length 12 cm moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with the x-axis.


Find the vertex, focus, axis, directrix and latus-rectum of the following parabolas 

y2 − 4y − 3x + 1 = 0 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola

y2 = 8x + 8y

 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 y2 = 5x − 4y − 9 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

x2 + y = 6x − 14


Write the axis of symmetry of the parabola y2 = x


Write the distance between the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0. 


If the coordinates of the vertex and focus of a parabola are (−1, 1) and (2, 3) respectively, then write the equation of its directrix. 


The equation of the parabola with focus (0, 0) and directrix x + y = 4 is 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

x2 + 2y2 − 2x + 12y + 10 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

4x2 + 16y2 − 24x − 32y − 12 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:

x2 + 4y2 − 2x = 0 


Find the equation of an ellipse whose foci are at (± 3, 0) and which passes through (4, 1).


A rod of length 12 m moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with x-axis. 


If the lengths of semi-major and semi-minor axes of an ellipse are 2 and \[\sqrt{3}\] and their corresponding equations are y − 5 = 0 and x + 3 = 0, then write the equation of the ellipse. 


If the minor axis of an ellipse subtends an equilateral triangle with vertex at one end of major axis, then write the eccentricity of the ellipse. 


If a latus rectum of an ellipse subtends a right angle at the centre of the ellipse, then write the eccentricity of the ellipse. 


Find the equation of the ellipse with foci at (± 5, 0) and x = `36/5` as one of the directrices.


The equation of the circle in the first quadrant touching each coordinate axis at a distance of one unit from the origin is ______.


The equation of the ellipse whose centre is at the origin and the x-axis, the major axis, which passes through the points (–3, 1) and (2, –2) is ______.


If the lines 3x – 4y + 4 = 0 and 6x – 8y – 7 = 0 are tangents to a circle, then find the radius of the circle.


Find the equation of a circle which touches both the axes and the line 3x – 4y + 8 = 0 and lies in the third quadrant.


Find the distance between the directrices of the ellipse `x^2/36 + y^2/20` = 1


The shortest distance from the point (2, –7) to the circle x2 + y2 – 14x – 10y – 151 = 0 is equal to 5.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×