Advertisements
Advertisements
Question
In the parabola y2 = 4ax, the length of the chord passing through the vertex and inclined to the axis at π/4 is
Options
\[4\sqrt{2}a\]
\[2\sqrt{2}a\]
\[\sqrt{2}a\]
none of these
Solution
\[4\sqrt{2}a\]
Let OP be the chord.
Let the coordinates of P be \[\left( x_1 , y_1 \right)\]
From the figure, we have:
\[O P^2 = {x_1}^2 + {y_1}^2\] (1)
And,
\[\tan\frac{\pi}{4} = \frac{y_1}{x_1}\]
\[\Rightarrow x_1 = y_1\] (2)
Also,
\[\left( x_1 , y_1 \right)\] lies on the parabola.
∴ \[{y_1}^2 = 4a x_1\] (3)
Using (2) and (3):
\[{x_1}^2 = 4a x_1 \Rightarrow x_1 = 4a\] (4)
∴ From (4), (1) and (2), we have:
\[O P^2 = \left( 4a \right)^2 + \left( 4a \right)^2 = 32 a^2 \]
\[ \Rightarrow OP = 4\sqrt{2}a\]
Therefore, the length of the chord is \[4\sqrt{2}a \text{ units }\]
APPEARS IN
RELATED QUESTIONS
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
`x^2/36 + y^2/16 = 1`
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
36x2 + 4y2 = 144
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
16x2 + y2 = 16
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
4x2 + 9y2 = 36
Find the vertex, focus, axis, directrix and latus-rectum of the following parabolas
y2 − 4y − 3x + 1 = 0
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
y2 + 4x + 4y − 3 = 0
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
y2 = 8x + 8y
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
y2 = 8x + 8y
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
4 (y − 1)2 = − 7 (x − 3)
Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line-segment makes an angle θ to the x-axis.
Write the length of the chord of the parabola y2 = 4ax which passes through the vertex and is inclined to the axis at \[\frac{\pi}{4}\]
If the coordinates of the vertex and focus of a parabola are (−1, 1) and (2, 3) respectively, then write the equation of its directrix.
The directrix of the parabola x2 − 4x − 8y + 12 = 0 is
The equation of the parabola with focus (0, 0) and directrix x + y = 4 is
Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
x2 + 2y2 − 2x + 12y + 10 = 0
Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
4x2 + y2 − 8x + 2y + 1 = 0
Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
4x2 + 16y2 − 24x − 32y − 12 = 0
Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
x2 + 4y2 − 2x = 0
Find the equation of an ellipse whose foci are at (± 3, 0) and which passes through (4, 1).
A rod of length 12 m moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with x-axis.
Find the equation of the set of all points whose distances from (0, 4) are\[\frac{2}{3}\] of their distances from the line y = 9.
Write the eccentricity of the ellipse 9x2 + 5y2 − 18x − 2y − 16 = 0.
If the minor axis of an ellipse subtends an equilateral triangle with vertex at one end of major axis, then write the eccentricity of the ellipse.
Find the equation of the ellipse with foci at (± 5, 0) and x = `36/5` as one of the directrices.
The equation of the circle in the first quadrant touching each coordinate axis at a distance of one unit from the origin is ______.
The equation of the circle having centre (1, –2) and passing through the point of intersection of the lines 3x + y = 14 and 2x + 5y = 18 is ______.
The equation of the ellipse whose centre is at the origin and the x-axis, the major axis, which passes through the points (–3, 1) and (2, –2) is ______.
Find the distance between the directrices of the ellipse `x^2/36 + y^2/20` = 1
The shortest distance from the point (2, –7) to the circle x2 + y2 – 14x – 10y – 151 = 0 is equal to 5.