Advertisements
Advertisements
प्रश्न
Five dice are thrown simultaneously. If the occurrence of an odd number in a single dice is considered a success, find the probability of maximum three successes.
उत्तर
Success = `p = 3/6 = 1/2`
Failure = `q = 1/2`
`P(x = r) = ""^nC_r p^r q^(n-r)`
Here n = 5, r = 0,1,2,3
`p =1/2 , q = 1/2`
Maximum three success = `P(0) + P(1) + P(2) + P(3)`
`= ""^5C_0 (1/2)^5 + ""^5C_1 (1/2)^5 + ""^5C_2(1/5)^5 + ""^5C_3 (1/2)^5`
`= (1/2)^5 [1 + 5 + 10 + 10]`
`= 26/32 = 13/16`
APPEARS IN
संबंधित प्रश्न
Assume that the chances of a patient having a heart attack is 40%. Assuming that a meditation and yoga course reduces the risk of heart attack by 30% and prescription of certain drug reduces its chance by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options, the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga. Interpret the result and state which of the above stated methods is more beneficial for the patient.
The probability that a certain kind of component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 tested components survive
In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses
A die is thrown three times. Events A and B are defined as below:
A : 5 on the first and 6 on the second throw.
B: 3 or 4 on the third throw.
Find the probability of B, given that A has already occurred.
A bag X contains 4 white balls and 2 black balls, while another bag Y contains 3 white balls and 3 black balls. Two balls are drawn (without replacement) at random from one of the bags and were found to be one white and one black. Find the probability that the balls were drawn from bag Y.
Determine P(E|F).
Two coins are tossed once, where
E: tail appears on one coin, F: one coin shows head
A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P (E|G) and P (G|E)
Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that
- both balls are red.
- first ball is black and second is red.
- one of them is black and other is red.
Two balls are drawn from an urn containing 3 white, 5 red and 2 black balls, one by one without replacement. What is the probability that at least one ball is red?
In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in at least one subject?
An urn contains 4 black, 5 white, and 6 red balls. Two balls are drawn one after the other without replacement, What is the probability that at least one ball is black?
Two balls are drawn from an urn containing 5 green, 3 blue, and 7 yellow balls one by one without replacement. What is the probability that at least one ball is blue?
From a pack of well-shuffled cards, two cards are drawn at random. Find the probability that both the cards are diamonds when the first card drawn is replaced in the pack
If for two events A and B, P(A) = `3/4`, P(B) = `2/5` and A ∪ B = S (sample space), find the conditional probability P(A/B)
The probability that a car being filled with petrol will also need an oil change is 0.30; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter need changing is 0.15. If the oil had to be changed, what is the probability that a new oil filter is needed?
Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if P(B/A) = 0.5
A year is selected at random. What is the probability that it contains 53 Sundays
If X denotes the number of ones in five consecutive throws of a dice, then P(X = 4) is ______
Find the probability that in 10 throws of a fair die a score which is a multiple of 3 will be obtained in at least 8 of the throws.
A bag contains 3 red and 4 white balls and another bag contains 2 red and 3 white balls. If one ball is drawn from the first bag and 2 balls are drawn from the second bag, then find the probability that all three balls are of the same colour.
If P(A) = `1/2`, P(B) = 0, then `P(A/B)` is
Let A and B be two non-null events such that A ⊂ B. Then, which of the following statements is always correct?
Let A, B be two events such that the probability of A is `3/10` and conditional probability of A given B is `1/2`. The probability that exactly one of the events A or B happen equals.
If A and B are two events such that `P(A/B) = 2 xx P(B/A)` and P(A) + P(B) = `2/3`, then P(B) is equal to ______.
Read the following passage:
Recent studies suggest the roughly 12% of the world population is left-handed.
Assuming that P(A) = P(B) = P(C) = P(D) = `1/4` and L denotes the event that child is left-handed. |
Based on the above information, answer the following questions:
- Find `P(L/C)` (1)
- Find `P(overlineL/A)` (1)
- (a) Find `P(A/L)` (2)
OR
(b) Find the probability that a randomly selected child is left-handed given that exactly one of the parents is left-handed. (2)
A Problem in Mathematics is given to the three students A, B and C. Their chances of solving the problem are `1/2, 1/3` and `1/4` respectively. Find the probability that exactly two students will solve the problem.
Compute P(A|B), if P(B) = 0.5 and P (A ∩ B) = 0.32.