Advertisements
Advertisements
प्रश्न
For drawing a frequency polygon of a continous frequency distribution, we plot the points whose ordinates are the frequencies of the respective classes and abcissae are respectively ______.
विकल्प
upper limits of the classes
lower limits of the classes
class marks of the classes
upper limits of perceeding classes
उत्तर
For drawing a frequency polygon of a continous frequency distribution, we plot the points whose ordinates are the frequencies of the respective classes and abcissae are respectively class marks of the classes.
Explanation:
Class marks i.e., the mid-point of the classes are abscissa of the points, which we plot for frequency polygon.
APPEARS IN
संबंधित प्रश्न
The blood groups of 30 students of Class VIII are recorded as follows:-
A, B, O, O, AB, O, A, O, B, A, O, B, A, O, O, A, AB, O, A, A, O, O, AB, B, A, O, B, A, B, O.
Represent this data in the form of a frequency distribution table. Which is the most common, and which is the rarest, blood group among these students?
The relative humidity (in %) of a certain city for a month of 30 days was as follows:-
98.1 | 98.6 | 99.2 | 90.3 | 86.5 | 95.3 | 92.9 | 96.3 | 94.2 | 95.1 |
89.2 | 92.3 | 97.1 | 93.5 | 92.7 | 95.1 | 97.2 | 93.3 | 95.2 | 97.3 |
96.2 | 92.1 | 84.9 | 90.2 | 95.7 | 98.3 | 97.3 | 96.1 | 92.1 | 89 |
(i) Construct a grouped frequency distribution table with classes
84 - 86, 86 - 88
(ii) Which month or season do you think this data is about?
(iii) What is the range of this data?
The heights of 50 students, measured to the nearest centimeters, have been found to be as follows:-
161 | 150 | 154 | 165 | 168 | 161 | 154 | 162 | 150 | 151 |
162 | 164 | 171 | 165 | 158 | 154 | 156 | 172 | 160 | 170 |
153 | 159 | 161 | 170 | 162 | 165 | 166 | 168 | 165 | 164 |
154 | 152 | 153 | 156 | 158 | 162 | 160 | 161 | 173 | 166 |
161 | 159 | 162 | 167 | 168 | 159 | 158 | 153 | 154 | 159 |
(i) Represent the data given above by a grouped frequency distribution table, taking the class intervals as 160 - 165, 165 - 170, etc.
(ii) What can you conclude bout their heights from the table?
A study was conducted to find out the concentration of sulphur dioxide in the air in parts per million (ppm) of a certain city. The data obtained for 30 days is as follows:-
0.03 | 0.08 | 0.08 | 0.09 | 0.04 | 0.17 |
0.16 | 0.05 | 0.02 | 0.06 | 0.18 | 0.20 |
0.11 | 0.08 | 0.12 | 0.13 | 0.22 | 0.07 |
0.08 | 0.01 | 0.10 | 0.06 | 0.09 | 0.18 |
0.11 | 0.07 | 0.05 | 0.07 | 0.01 | 0.04 |
(i) Make a grouped frequency distribution table for this data with class intervals as 0.00 - 0.04, 0.04 - 0.08, and so on.
(ii) For how many days, was the concentration of sulphur dioxide more than 0.11 parts per million?
The marks scored by 55 students in a test are given below:
Marks | 0-5 | 5-10 | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 |
No. of students | 2 | 6 | 13 | 17 | 11 | 4 | 2 |
Prepare a cumulative frequency table:
Following are the ages of360 patients getting medical treatment in a hospital on a day:
Age (in years): |
10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 |
No. of Patients: |
90 | 50 | 60 | 80 | 50 | 30 |
Construct a cumulative frequency distribution.
Given below is a cumulative frequency distribution table showing the ages of people living in a locality:
Ace in years | No. of persons |
Above 108 | 0 |
Above 96 | 1 |
Above 84 | 3 |
Above 72 | 5 |
Above 60 | 20 |
Above 48 | 158 |
Above 36 | 427 |
Above 24 | 809 |
Above 12 | 1026 |
Above 0 | 1124 |
Prepare a frequency distribution table
The difference between the highest and lowest values of the observations is called
The mid-value of a class interval is 42. If the class size is 10, then the upper and lower limits of the class are:
The value of π upto 35 decimal places is given below:
3.14159265358979323846264338327950288
Make a frequency distribution of the digits 0 to 9 after the decimal point.