हिंदी

For each of the following matrices, find its transpose and state whether it is symmetric, skew- symmetric or neither. [251-546-1-63] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For each of the following matrices, find its transpose and state whether it is symmetric, skew-symmetric, or neither.

`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`

योग

उत्तर

Let A = `[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`

∴ AT = `[(2, -5, -1),(5, 4, -6),(1, 6, 3)]`

∴ –AT = `[(-2, 5, 1),(-5, -4, 6),(-1, -6, -3)]`

∵ A ≠ AT and A ≠ –AT

∴ A is neither a symmetric nor a skew-symmetric matrix.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Matrices - Exercise 2.2 [पृष्ठ ४७]

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Solve the following equations by reduction method: 

x + y + z = 6,

3x - y + 3z = 10

5x + y - 4z = 3 


Solve the following equations by reduction method: 

x+ y+z = 6,

3x-y+3z = 10

5x+ y-4z = 3 


If A = `[(1,2),(3,-1)] , "B" = [(7,1),(2,5)]`

Verify that |AB| = |A|.|B|


If A = `[(1,2,3),(2,"a",2),(5,7,3)]` is a singular matrix , find the value of 'a'.


Find x and y if `x + y = [(7,0),(2,5)] , x - y[(3,0),(0,3)]`


Solve the following equations by reduclion method 

x+3y+3z= 16 ,  x+4y+4z=21 , x+3y+4z = 19 


If A = `[(2, 1), (1, 1)]` show that A2 - 3A + I = 0


Solve the following equations by reduction method : 

x + 2y + z = 8 

2x+ 3y - z = 11 

3x - y - 2z = 5


If A = `[(1, -2),(5, 3)], "B" = [(1, -3),(4, -7)]` , then find the matrix A − 2B + 6I, where I is the unit matrix of order 2.


If A = `[(1, 2, -3),(-3, 7, -8),(0, -6, 1)], "B" = [(9, -1, 2),(-4, 2, 5),(4, 0, -3)]` then find the matrix C such that A + B + C is a zero matrix.


If A = `[(5, 1, -4),(3, 2, 0)]`, find (AT)T.


If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, find (AT)T.


Find a, b, c, if `[(1, 3/5, "a"),("b", -5, -7),(-4, "c", 0)]` is a symmetric matrix.


Find x, y, z if `[(0, -5i, x),(y, 0, z),(3/2, - sqrt(2), 0)]` is a skew symmetric matrix.


If `[(2"a" + "b", 3"a" - "b"),("c" + 2"d", 2"c" - "d")] = [(2, 3),(4, -1)]`, find a, b, c and d.


There are two book shops own by Suresh and Ganesh. Their sales (in Rupees) for books in three subject - Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B.

July sales (in Rupees), Physics Chemistry Mathematics

A = `[(5600, 6750, 8500),(6650, 7055, 8905)][("Suresh"), ("Ganesh")]`

August Sales (in Rupees) Physics Chemistry Mathematics

B = `[(6650, 7055, 8905),(7000, 7500, 10200)][("Suresh"), ("Ganesh")]`

Find the increase in sales in Rupees from July to August 2017.


There are two book shops own by Suresh and Ganesh. Their sales ( in Rupees) for books in three subject - Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B. July sales ( in Rupees) :
Physics Chemistry Mathematics
A = `[(5600, 6750, 8500),(6650, 7055, 8905)][("Suresh"), ("Ganesh")]`
August Sales (in Rupees :
B = `[(6650, 7055, 8905),(7000, 7500, 10200)][("Suresh"), ("Ganesh")]`
If both book shops get 10% profit in the month of August 2017, find the profit for each book seller in each subject in that month.


If A = `[(5, -3),(4, -3),(-2, 1)]`, prove that (AT)T = A.


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(2, 1),(4, -1),(-3, 3)], "C" = [(1, 2),(-1, 4),(-2, 3)]`, then show that (A – C)T = AT – CT.


Express each of the following matrix as the sum of a symmetric and a skew symmetric matrix `[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`.


Fill in the blank:

A = `[(3),(1)]` is ........................ matrix.


State whether the following is True or False :

A = `[(4, 5),(6, 1)]` is no singular matrix.


State whether the following is True or False :

If A is symmetric, then A = –AT.


If A = `[(2, -3),(5, -4),(-6, 1)], "B" = [(-1, 2),(2, 2), (0, 3)] and "C" = [(4,  3),(-1, 4),(-2, 1)]` Show that (A + B) + C = A + (B + C)


If A = `[(1, -2),(5, 3)], "B" = [(1, -3),(4, -7)]`, then find the matrix A – 2B + 6I, where I is the unit matrix of order 2.


If A = `[(1, -2),(3, -5),(-6, 0)], "B" = [(-1, -2),(4, 2),(1, 5)] and "C" = [(2, 4),(-1, -4),(-3, 6)]`, find the matrix X such that 3A – 4B + 5X = C.


Answer the following question:

Find matrices A and B, where 3A – B = `[(-1, 2, 1),(1, 0, 5)]` and A + 5B = `[(0, 0, 1),(-1, 0, 0)]`


Answer the following question:

If A = `[(1, -1, 0),(2, 3, 4),(0, 1, 2)]`, B = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)]`, show that BA = 6I


Choose the correct alternative:

If A = `[(1, 3/5, x),(y, -5, -7),(-4, -7, 0)]` is a symmetric matrix, then the values of x and y are ______ respectively.


In a Skew symmetric matrix, all diagonal elements are ______


Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I, where I is identity matrix of order 2


If `A = [(-3,2),(2,4)], B = [(1,a),(b,0)]  "and"  (A + B)(A-B) = A^2 - B^2, "Find"  a  "and"  b`


Find the x, y, z, if `{3[(2,0),(0,2),(2,2)]-4[(1,1),(-1,2),(3,1)]}[(1),(2)]=[(x-3),(y-1),(      2z)]`


If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT , such that 3A – 2B + C = I, where I is the unit matrix of order 2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×