हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

For the reaction AB(g)↽−−⇀A(g)+B(g), at equilibrium, AB is 20 % dissociated at a total pressure of P, the equilibrium constant Kp is related to the total pressure by the expression - Chemistry

Advertisements
Advertisements

प्रश्न

For the reaction \[\ce{AB(g) <=> A(g) + B(g)}\], at equilibrium, AB is 20 % dissociated at a total pressure of P, the equilibrium constant Kp is related to the total pressure by the expression 

विकल्प

  • P = 24 Kp

  • P = 8 Kp

  • 24 P = Kp

  • none of these

MCQ

उत्तर

P = 24 Kp

shaalaa.com
Equilibrium Constants
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Physical and Chemical Equilibrium - Evaluation [पृष्ठ २३]

APPEARS IN

सामाचीर कलवी Chemistry - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 8 Physical and Chemical Equilibrium
Evaluation | Q I. 11. | पृष्ठ २३

संबंधित प्रश्न

Which one of the following is incorrect statement ?


In the equilibrium,

\[\ce{2A(g) <=> 2B(g) + C2(g)}\]

the equilibrium concentrations of A, B and C2 at 400 K are 1 × 10–4 M, 2.0 × 10–3 M, 1.5 × 10–4 M respectively. The value of KC for the equilibrium at 400 K is


The values of Kp1 and Kp2; for the reactions,

X ⇌ Y + Z,

A ⇌ 2B are in the ratio 9 : 1 if degree of dissociation of X and A be equal then total pressure at equilibrium P1, and P2 are in the ratio


For the formation of Two moles of SO3(g) from SO2 and O2, the equilibrium constant is K1. The equilibrium constant for the dissociation of one mole of SO3 into SO2 and O2 is


When the numerical value of the reaction quotient (Q) is greater than the equilibrium constant, in which direction does the reaction proceed to reach equilibrium?


What is the effect of added Inert gas on the reaction at equilibrium?


For the reaction

\[\ce{SrCO3(s) <=> SrO(s) + CO2(g)}\]

the value of equilibrium constant Kp = 2.2 × 10-4 at 1002 K. Calculate Kc for the reaction.


At particular temperature Kc = 4 × 10-2 for the reaction, \[\ce{H2S (g) <=> H2(g) +1/2 S2(g)}\]. Calculate the Kc for the following reaction.

\[\ce{3H2S (g) <=> 3H2 (g) + 3/2 S2 (g)}\]


The equilibrium for the dissociation of XY2 is given as,

\[\ce{2 XY2 (g) <=> 2 XY (g) + Y2 (g)}\]

if the degree of dissociation x is so small compared to one. Show that 2 Kp = PX3 where P is the total pressure and Kp is the dissociation equilibrium constant of XY2.


The equilibrium constant Kp for the reaction \[\ce{N2 (g) + 3H2 (g) <=> 2NH3 (g)}\] is 8.19 × 102 at 298 K and 4.6 × 10-1 at 498 K. Calculate ∆H° for the reaction.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×