हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

The values of Kp1 and Kp2; for the reactions, X ⇌ Y + Z, A ⇌ 2B are in the ratio 9 : 1 if degree of dissociation of X and A be equal then total pressure at equilibrium P1, and P2 are in the ratio - Chemistry

Advertisements
Advertisements

प्रश्न

The values of Kp1 and Kp2; for the reactions,

X ⇌ Y + Z,

A ⇌ 2B are in the ratio 9 : 1 if degree of dissociation of X and A be equal then total pressure at equilibrium P1, and P2 are in the ratio

विकल्प

  • 36 : 1

  • 1 : 1

  • 3 : 1

  • 1 : 9

MCQ

उत्तर

36 : 1

shaalaa.com
Equilibrium Constants
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Physical and Chemical Equilibrium - Evaluation [पृष्ठ २४]

APPEARS IN

सामाचीर कलवी Chemistry - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 8 Physical and Chemical Equilibrium
Evaluation | Q I. 14. | पृष्ठ २४

संबंधित प्रश्न

K1 and K2 are the equilibrium constants for the reactions respectively.

\[\ce{N2(g) + O2(g) <=>[K1] 2NO(g)}\]

\[\ce{NO(g) + O2(g) <=>[K2] 2NO2(g)}\]

What is the equilibrium constant for the reaction \[\ce{NO2(g) <=> 1/2 N2(g) + O2(g)}\]


In which of the following equilibrium, Kp and Kc are not equal?


In a chemical equilibrium, the rate constant for the forward reaction is 2.5 × 10-2, and the equilibrium constant is 50. The rate constant for the reverse reaction is,


\[\ce{[CO(H2O)6]^2+ (aq) (pink) + 4Cl- (aq) <=> [CoCl4]^2- (aq) (blue) + 6 H2O (l)}\]

In the above reaction at equilibrium, the reaction mixture is blue in colour at room temperature. On cooling this mixture, it becomes pink in color. On the basis of this information, which one of the following is true?


What is the relation between Kp and Kc? Given one example for which Kp is equal to Kc.


Derive a general expression for the equilibrium constant Kp and Kc for the reaction, \[\ce{3H2(g) + N2(g) <=> 2NH3(g)}\].


One mole of PCl5 is heated in one litre closed container. If 0.6 mole of chlorine is found at equilibrium, Calculate the value of equilibrium constant.


To study the decomposition of hydrogen iodide, a student fills an evacuated 3 litre flask with 0.3 mol of HI gas and allows the reaction to proceed at 500°C. At equilibrium he found the concentration of HI which is equal to 0.05 M. Calculate Kc and Kp.


At particular temperature Kc = 4 × 10-2 for the reaction, \[\ce{H2S (g) <=> H2(g) +1/2 S2(g)}\]. Calculate the Kc for the following reaction.

\[\ce{2H2S (g) <=> 2H2 (g) + S2 (g)}\]


The equilibrium constant Kp for the reaction \[\ce{N2 (g) + 3H2 (g) <=> 2NH3 (g)}\] is 8.19 × 102 at 298 K and 4.6 × 10-1 at 498 K. Calculate ∆H° for the reaction.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×