Advertisements
Advertisements
प्रश्न
For the reaction at 298 K: \[\ce{2A + B -> C}\]
ΔH = 400 KJ mol−1; ΔS = 0.2 KJ K−1 mol−1 Determine the temperature at which the reaction would be spontaneous.
उत्तर
Given, T = 298 K
ΔH = 400 KJ mol−1
ΔS = 0.2 KJ K−1 mol−1
ΔG = ΔH − TΔS
if T = 2000 K
ΔG = 400 − (0.2 × 2000) = 0
ΔH = 400 KJ mol−1 if T > 2000 K
ΔG will be negative.
The reaction would be spontaneous only beyond 2000 K
APPEARS IN
संबंधित प्रश्न
∆S is expected to be maximum for the reaction
The values of ∆H and ∆S for a reaction are respectively 30 kJ mol–1 and 100 JK–1 mol–1. Then the temperature above which the reaction will become spontaneous is
What is the usual definition of entropy?
Identify the state and path functions out of the following:
- Enthalpy
- Entropy
- Heat
- Temperature
- Work
- Free energy
What are spontaneous reactions?
1 mole of an ideal gas, maintained at 4.1 atm and at a certain temperature, absorbs heat 3710 J and expands to 2 litres. Calculate the entropy change in the expansion process.
30.4 kJ is required to melt one mole of sodium chloride. The entropy change during melting is 28.4 JK−1 mol−1. Calculate the melting point of sodium chloride.
You are given normal boiling points and standard enthalpies of vapourisation. Calculate the entropy of vapourisation of liquids listed below.
Liquid | Boiling points (°C) | ΔH (kJ mol−1) |
Ethanol | 78.4 | + 42.4 |
You are given normal boiling points and standard enthalpies of vapourisation. Calculate the entropy of vapourisation of liquids listed below.
Liquid | Boiling points (°C) | ΔH (kJ mol−1) |
Toluene | 110.6 | + 35.2 |
Calculate the enthalpy of hydrogenation of ethylene from the following data.
Bond energies of C − H, C − C, C = C and H − H are 414, 347, 618 and 435 kJ mol−1.