हिंदी

Four Cells, Each of E.M.F. 1.5 V and Internal Resistance 2.0 Ohms Are Connected in Parallel. the Battery of Cells is Connected to an External Resistance of 2.5 Ohms. Calculate: - Physics

Advertisements
Advertisements

प्रश्न

Four cells, each of e.m.f. 1.5 V and internal resistance 2.0 ohms are connected in parallel. The battery of cells is connected to an external resistance of 2.5 ohms. Calculate:

(i) The total resistance of the circuit.
(ii) The current flowing in the external circuit.
(iii) The drop in potential across-the terminals of the cells.

टिप्पणी लिखिए

उत्तर

E.m.f. of cell (each) = 1.5 V. and also e.m.f. of all four cells = 1.5V, internal resistance of each cell = 2.0 ohm.

Total internal resistance of all four cells

`1/"r"^1 = 4/"r" = 4/2.0 = 2.0  "ohm"`

∴ r1 = `1/2` = 0.5 ohm

(i) ∴ Total resistance of circuit = R + r

= 2.5 + 0.5 = 3.0 ohm

(ii) Current flowing in the external circuit

I = `"E"/"r" = 1.5/2.5 = 0.6` Amp.

(iii) The drop in potential across the terminals of the cells

= `"I" xx "r"/4 = 0.6 xx 2/4 = 0.6 xx 0.5 = 0.30 "Volt."`

shaalaa.com
Internal Resistance of a Cell
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Electricity - Figure Based Short Answers

APPEARS IN

आईसीएसई Physics [English] Class 10
अध्याय 7 Electricity
Figure Based Short Answers | Q 22

संबंधित प्रश्न

A cell of e.m.f ε and internal resistance r is used to send current to an external resistance R. Write expressions for

  1. the total resistance of circuit.
  2. the current drawn from the cell.
  3. the p.d. across the cell.
  4. voltage drop inside the cell. 

Explain why the p.d across the terminals of a cell is more in an open circuit and reduced in a closed circuit. 


A cell is used to send current to an external circuit.

  1. How does the voltage across its terminals compare with its e.m.f.?
  2. Under what condition is the e.m.f. of a cell equal to its terminal voltage? 

A battery of e.m.f 3.0 V supplies current through a circuit in which the resistance can be changed.
A high resistance voltmeter is connected across the battery. When the current is 1.5 A, the voltmeter reads 2.7 V. Find the internal resistance of the battery. 


A cell of e.m.f. 1.8V and internal resistance 2Ω is connected in series with an ammeter of resistance 0.7Ω and a resistor of 4.5Ω as shown in Fig. 

  1. What would be the reading of the ammeter?
  2. What is the potential difference across the terminals of the cell? 

A battery of e.m.f. 15 V and internal resistance 3 ohm is connected to two resistors of resistances 3 ohm and 6 ohm is series Find:
(a) the current through the battery
(b) the p.d. between the terminals of the battery. 


A cell of e.m.f. ε and internal resistance 𝔯 sends current 1.0 A when it is connected to an external resistance 1.9 Ω. But it sends current 0.5 A when it is connected to an external resistance 3.9 Ω. Calculate the values of ε and 𝔯.


Four cells each of e.m.f. 2V and internal resistance 0.1 Ω are connected in series to an ammeter of negligible resistance, a 1.6 Ω resistor and an unknown resistor R1. The current in the circuit is 2A. Draw a labelled diagram and calculate:

(i) Total resistance of the circuit,
(ii) Total e.m.f.
(iii) The value of R1 and
(iv) The p.d. across R1.


Explain the meaning of the term internal resistance of a cell.


The diagram in Figure shows a cell of e.m.f. ε = 4 volt and internal resistance r = 2 ohm connected to an external resistance R = 8 ohm. The ammeter A measures the current in the circuit and the voltmeter V measures the terminal voltage across the cell. What will be the readings of the ammeter and voltmeter when

  1. the key K is open, and
  2. the key K is closed


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×