हिंदी

Explain why the p.d across the terminals of a cell is more in an open circuit and reduced in a closed circuit. - Physics

Advertisements
Advertisements

प्रश्न

Explain why the p.d across the terminals of a cell is more in an open circuit and reduced in a closed circuit. 

स्पष्ट कीजिए

उत्तर

There is no drain on the cell's current when the circuit is open. Thus, the p.d. gradually evolved between the cell's electrodes due to chemical reactions within the cell. However, if a cell's current is removed, the voltage drops because the process of transferring a unit charge around the circuit formed by the cell's terminals requires energy. Therefore, in an open circuit, the potential difference across the cell's terminals is greater than in a closed circuit.

shaalaa.com
Internal Resistance of a Cell
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Current Electricity - Exercise 8 (B) 1 [पृष्ठ २००]

APPEARS IN

सेलिना Physics [English] Class 10 ICSE
अध्याय 8 Current Electricity
Exercise 8 (B) 1 | Q 6 | पृष्ठ २००

संबंधित प्रश्न

A cell of Emf 2 V and internal resistance 1.2 Ω is connected with an ammeter of resistance 0.8 Ω and two resistors of 4.5 Ω and 9 Ω as shown in the diagram below:

1) What would be the reading on the Ammeter?

2) What is the potential difference across the terminals of the cell?


A battery of e.m.f. 15 V and internal resistance 3 ohm is connected to two resistors of resistances 3 ohm and 6 ohm is series Find:
(a) the current through the battery
(b) the p.d. between the terminals of the battery. 


A cell of e.m.f. 2 V and internal resistance 1.2 Ω is connected to an ammeter of resistance 0.8 Ω and two resistors of 4.5 Ω and 9 Ω as shown in following figure.

Find:

  1. The reading of the ammeter,
  2. The potential difference across the terminals of the cells, and
  3. The potential difference across the 4.5 Ω resistor.

A battery of 4 cell, each of e.m.f. 1.5 volt and internal resistance 0.5 Ω is connected to three resistances as shown in the figure. Calculate:
(i) The total resistance of the circuit.
(ii) The current through the cell.
(iii) The current through each resistance.
(iv) The p.d. across each resistance.


Four cells each of e.m.f. 2V and internal resistance 0.1 Ω are connected in series to an ammeter of negligible resistance, a 1.6 Ω resistor and an unknown resistor R1. The current in the circuit is 2A. Draw a labelled diagram and calculate:

(i) Total resistance of the circuit,
(ii) Total e.m.f.
(iii) The value of R1 and
(iv) The p.d. across R1.


A cell supplies a current of 0.6 A through a 2Ω coil and a current of 0.3 A through on 8Ω coil. Calculate the e.m.f and internal resistance of the cell.


(a) Calculate the total resistance across AB.

(b) If a cell of e.m.f 2.4 V with negligible internal resistance is connected across AB then calculate the current drawn from the cell.


Explain the meaning of the term internal resistance of a cell.


The diagram in Figure shows a cell of e.m.f. ε = 4 volt and internal resistance r = 2 ohm connected to an external resistance R = 8 ohm. The ammeter A measures the current in the circuit and the voltmeter V measures the terminal voltage across the cell. What will be the readings of the ammeter and voltmeter when

  1. the key K is open, and
  2. the key K is closed


A battery of e.m.f. 6·0 V supplies current through a circuit in which the resistance can be changed. A high resistance voltmeter is connected across the battery. When the current is 3 A, the voltmeter reads 5.4 V. Find the internal resistance of the battery.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×